• Title/Summary/Keyword: Manipulators

Search Result 765, Processing Time 0.034 seconds

An Adaptive Fuzzy Sliding Mode Controller for Robot Manipulators

  • Seo, Sam-Jun;Park, Gwi-Tae;Kim, Dongsik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.1-162
    • /
    • 2001
  • In this paper, the adaptive fuzzy system is used as an adaptive approximator for robot nonlinear dynamic. A theoretical justification for the adaptive approximator is proving that if the representive point(RP or switching function) and its derivative in sliding mode control are used as the inputs of the adaptive fuzzy system, the adaptive fuzzy system can approximate robot nonlinear dynamics in the neighborhood of the switching surface. Thus the fuzzy controller design is greatly simplified and at the same time, the fuzzy control rule can be obtained easily by the reaching condition. Based on this, a new method for designing an adaptive fuzzy control system based on sliding mode is proposed for the trajectory tracking control of a robot with unknown nonlinear dynamics.

  • PDF

Robust Force Control of Electro-hydraulic Manipulator in the Field Task

  • Cho, Yong-Rae;Ahn, Kyoung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.4-134
    • /
    • 2001
  • Hydraulically driven manipulators are superior to electrically driven ones in the power density and electrical insulation. But an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous field tasks such as the maintenance task of high voltage active electric line or the automatic excavation task by hydraulic excavator. In this report, we propose robust force control algorithm, which can be applied to the real field task such as the construction field, nuclear plant and so on. Proposed force controller has the same structure as that of disturbance observer for position control. The difference between force and position disturbance ...

  • PDF

A Study on Stable Grasping Control of Dual-Fingers with Soft-Tips

  • Sim, Jae-Goon;Yang, Soon-Yong;Han, Hyun-Yong;Lee, Byung-Ryon;Ahn, kyung-Kwan;Kim, Sung-Su;Park, Kyung-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.4-108
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot fingers which stably grasps and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for differential-algebraic equations of overall...

  • PDF

Two-Degrees-Of-Freedom Internal Model Position Control for Slave Manipulator Teleoperated by Master Arm

  • Park, Byung-Suk;Kim, Dong-Gi;Jin, Jae-Hyun;Ahn, Sung-Ho;Song, Tae-Gil;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.5-108
    • /
    • 2002
  • Recently, the more advanced control technologies are required to deal with the fast and accurate motion in manipulators. For these requirements, many manipulator control methods have been developed such as a computed torque method. This paper proposes a design method, a two-degrees-of-freedom internal model control (TDOF IMC), of the manipulator position control based on combination of the one-degree-of-freedom internal model control (ODOF IMC) system and the disturbance observer. The proposed control scheme is implemented for the position control, which leads the slave manipulator to the desired location by the master arm. The experimental results are presented and discussed through the imp...

  • PDF

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

The Vibration Control of Flexible Manipulators using Adaptive Input Shaper (적응 입력다듬기를 이용한 유연한 조작기의 진동제어)

  • 신효필;정영무;강이석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.220-227
    • /
    • 1999
  • The position control accuracy of a robot arm is significantly deteriorated when a long slender arm robot is operated at a high speed. In this case, the robot arm needs to be modeled as a flexible structure, not a rigid one, and its control system needs to be designed with its elastic modes taken into account. In this paper, the vibration control scheme of a one-link flexible manipulator using adaptive input shaper in conjunction with PID controller is presented. The robot consists of a flexible arm manufactured with a thin aluminium plate, an AC servo motor with a harmonic drive for speed reduction, an optical encoder and an accelerometer. On-line identification of the vibration mode is done using the pruned decimation-in-time FFT algorithm to estimate the parameter of the input shaper. Experimental results of the flexible manipulator with a PID controller and input shaper are provided to show the effectiveness of the advocated controllers.

  • PDF

Force Reflection Control with a Speed Saturation Compensation Scheme for Telemanipulators (원격조작기의 속도포화 보상 힘반영 제어)

  • Ahn, Sung-Ho;Yoon, Ji-Sup;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.894-902
    • /
    • 2000
  • This paper proposes a force reflection control method with a speed saturation compensation scheme for the slave manipulators having a speed saturation due to the high reduction ratio joints. When speed saturation is generated, the proposed force reflection control method not only shows an anti-windup feature in controlling the slave manipulator but also makes the master manipulator move slowly using the force reflection caused by saturation. In this way, the position of the slave manipulator tracks the reference position regardless of speed saturation. The experimental results show that the proposed control method provides excellent performance.

  • PDF

Research on the collision avoidance of manipulators based on the global subgoals and a heuristic graph search

  • Inoue, Y.;Yoshimura, T.;Kitamura, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.609-614
    • /
    • 1989
  • A collision avoidance algorithm based on a heuristic graph search and subgoals is presented. The joint angle space is quantized into cells. The evaluation function for a heuristic search is defined by the sum of the distance between the links of a manipulator and middle planes among the obstables and the distance between the end-effector and the subgoals on desired trajectory. These subgoals reduce the combinatorial explosion in the search space. This method enables us to avoid a dead-lock in searching. Its effectiveness has been verified by simulation studies.

  • PDF

Stability of the Robot Compliant Motion control - Part 1 : Theory

  • Kim, Sung-Kwun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.973-980
    • /
    • 1988
  • This two-part paper presents a control method that allows for stable interaction of a robot manipulator with the environment. In part 1, we focus on the input ouput relationships (unstructured modeling) of the robot and environment dynamics. This analysis leads to a general condition for stability of the robot and environment taken as a whole. This stability condition, for stable maneuver, prescribes a finite sensitivity for robot and environment where sensitivity of the robot(or the environment) is defined as a mapping forces into displacement. According to this stability condition, smaller sensitivity either in robot or in environment leads to narrower stability range. In the limit, when both systems have zero sensitivity, stability cannot be guaranteed. These models do not have any particular structure, yet they can model a wide variety of industrial and research robot manipulators and environment dynamic behavior. Although this approach of modeling may not lead to any design procedure, it will allow us to understand the fundamental issues in stability when a robot interacts with an environment.

  • PDF

Optimal time control of multiple robot using hopfield neural network (홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF