• Title/Summary/Keyword: Manipulator

Search Result 1,812, Processing Time 0.032 seconds

Real-Time Motion Tracking Detection System for a Spherical Pendulum Using a USB Camera (USB 카메라를 이용한 실시간 구면진자 운동추적 감지시스템)

  • Moon, Byung-Yoon;Hong, Sung-Rak;Ha, Manh-Tuan;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.807-813
    • /
    • 2016
  • Recently, a spherical pendulum attached to an end-effector of a robot manipulator has been frequently used for a test bed of residual vibration suppression control in a multi-dimensional motion. However, there was no automatic tracking system to detect the current bob position on-line, and there was inconvenience to not be able to store the bob position in real time and plot the trajectory. In this study, we developed a two-dimensional, real-time bob-detecting system using a digital USB camera, of which the key is hardware component design and software C programming for fast image processing and interfacing. The developed system was applied to residual vibration suppression control of a two-dimensional spherical pendulum that is attached at the end-effector of a two degree-of-freedom SCARA robot, and the effectiveness of the developed system has been demonstrated.

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

Development of an intuitive motion-based drone controller (직관적 제어가 가능한 드론과 컨트롤러 개발)

  • Seok, Jung-Hwan;Han, Jung-Hee;Baek, Jun-Hyuk;Chang, Won-Joo;Kim, Huhn
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.41-45
    • /
    • 2017
  • Drones can be manipulated in a variety of ways. One of the most common controller is joystick method. But joystick controller uses both hands and takes a long time to learn. Particularly, in the case of 8-character flight, it is necessary to use both front and rear flight (pitch), left and right flight (Roll), and body rotation (Yaw). Joystick controller has limitations to intuitively control it. In particular, when the main body rotates, the viewpoint of the forward direction is changed between the drones and the user, thereby causing a mental rotation problem in which the user must control the rotating state of the drones. Therefore, we developed a motion matching controller that matches the motion of the drones and the controller. That is, the movement of the drone and the movement of the controller are the same. In this study, we used a gyro sensor and an acceleration sensor to map the controller's forward / backward, left / right and body rotation movements to drone's forward / backward, left / right, and rotational flight motion. The motor output is controlled by the throttle dial at the center of the controller. As the motions coincide with each other, it is expected that the first drone operator will be able to control more intuitively than the joystick manipulator with less learning.

A Development of Rehabilitation System for Upper Limb Using Robot Manipulator (로봇을 이용한 상지 재활 시스템에 관한 연구)

  • 원주연;심형준;한창수
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • In this paper a 6 degree-of-freedom robot was studied for medical purpose. In the past the robot used for industry field was utilized for medical robot but in these days the robot used for rehabilitation. welfare, and service. This system was Proposed for a stroke patient or a patient who can not use one arm. A master-slave system was constructed to exercise either paralysis or abnormal arm using normal arms movement. Study on the human body motion result was applied to calculate a movement range of humans elbow and shoulder. In addition, a force-torque sensor is applied to estimate the rehabilitation extent of the patient in the slave robot. Therefore, the stability of the rehabilitation robot could be improved. By using the rehabilitation robot, the Patient could exercise by himself without any assistance In conclusion. the proposed system and control algorithm were verified by computer simulation and system experiment.

Optimal Manipulation for a Hexapod Walking Robot (6족 보행 로봇에서의 최적 머니퓰레이션)

  • Seo, Hyeon-Se;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.168-174
    • /
    • 2015
  • The ultimate purpose of a walking robot is to move to a designated spot and to perform a necessary manipulation. To perform various manipulations for a walking robot, it should have some kind of an extra manipulator. However, if the manipulation task for the robot is simple enough, the robot can perform the task by using its legs. Among various kinds of walking robots, a hexapod walking robot has relatively many legs, so it has the advantage of stability and walking speed. So, a hexapod walking robot can perform simple manipulation task by using its one or two legs while maintaining stability by using the rest of legs. In this paper, we deal with a simple manipulation task of holding a ball. We formulate the task as a redundancy resolution problem and propose a method for obtaining an optimal solution.

Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study

  • Cho, Ki Hun;Song, Won-Kyung
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.2
    • /
    • pp.93-98
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors. Design: One group pretest-posttest design. Methods: Thirteen chronic stroke survivors participated in this study. Robot arm reach training was performed with a Whole Arm Manipulator (WAM) and a 120-inch projective display to provide visual and auditory feedback. During the robotic arm reach training, WAM provided gravity compensation and assist-as-needed (AAN) force according to the robot control mode. When a participant could not move the arm toward the target for more than 2 seconds, WAM provided AAN force to reach the desired targets. All patients participated in the training for 40 minutes per day, 3 times a week, for 4 weeks. Main outcome measures were the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT) and Box and Block Test (BBT) to assess upper extremity functional movement. Results: After 4 weeks, significant improvement was observed in upper extremity functional movement (FMA: 42.15 to 46.23, BBT: 12.23 to 14.00, p<0.05). In the subscore analysis of the FMA upper extremity motor function domains, significant improvement was observed in upper extremity and coordination/speed units (p<0.05). However, there were no significant differences in the ARAT. Conclusions: This study showed the positive effects of robot arm reach training on upper extremity functional movement in chronic stroke survivors. In particular, we confirmed that robot arm reach training could have a positive influence by leading to improvement of motor recovery of the proximal upper extremity.

Christianity in "A Good Man Is Hard to Find" (「좋은 사람은 찾기 어렵네」에 나타난 기독교 담론)

  • Park, Jai Young
    • Journal of English Language & Literature
    • /
    • v.54 no.4
    • /
    • pp.511-530
    • /
    • 2008
  • In "A Good Man Is Hard to Find," Flannery O'Connor describes a striking journey of a family, in which all the members dramatically get killed. Through the tragic death of Bailey's family, O'Connor evokes the reader to think about life and the life after death. Growing up in the communities of Catholicism and Protestantism, O'Connor herself had agonized with the same question between the two types of Christian belief throughout her life. In the story, O'Connor embodies her anguish with the major characters and questions the reader about the meaning of Christian salvation. More specifically, Bailey's family represent the people who get lost in life. They live without any direction and purpose. Red Sammy and his wife, on the other hand, provide travellers with rest, food, and the necessaries. The Tower is a shelter of travellers in life; however, it is not everlasting but temporary. The Misfit, exemplifying religious stragglers, has been completely frustrated with the variance of Christian salvation theories, and no longer practices the religion but knows enough to justify his cruel behaviors. Finally, the grandmother is the manipulator and opportunist of the religion. All those characters are fragments of human characters and their life - obscene and transitory. In the story, there is little God's grace on the surface even though the writer claims "all my stories are about the action of grace." Nonetheless, the reader should be able to identify with those characters because they are the mirror images of themselves. While visualizing the characters, O'Connor wants the reader to have a moment to think about the "Righteousness," and ultimately to seek out God's grace that she essentially wishes to show the reader. Instead of showing God's grace directly, O'Connor ultimately leads the reader to consider about God and the grace as she/he reads the work.

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

A Study on Development of Technology System for Deep-Sea Unmanned Underwater Robot of S. Korea analysed by the Application of Scenario Planning (한국형 수중로봇시스템의 기술개발연구 - 시나리오플래닝 적용으로 -)

  • Lee, Sang-Yun;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.27-40
    • /
    • 2013
  • This study is about development of technology system for an advanced deep-sea unmanned underwater robot of S. Korea analysed by the application of scenario planning. It was developed a 6000m class next-generation deep-sea unmanned underwater vehicle(or robot, UUV) system, soonly ROV 'Hemire' and Depressor 'Henuvy' in 2006 at S. Korea and motion control, adaptive control algolithm, a work-space manipulator control algolithm, especially the underwater inertial-acoustic navigation system robust to initial errors and sensor failures. But there are remained matters on position tracking of the USBL, inertial-acoustic navigation system, attitude sensor, designed sonar sensors. So this study suggest the new idea for settle the matters and then this idea help the development of the underwater inertial-acoustic navigation system robust to initial errors and sensor failures, such as acoustic signal drop-out, by modifying the error covariance of the failed sonar signal when drop-out occurs. As a result, the future policy for deep-sea unmanned underwater robot of S. Korea is to further spur the development of new technology and more improvement of the technology level for deep-sea unmanned underwater robot system with indicator and imaginary wall as external device.

Development of a Simulator for Optimizing Semiconductor Manufacturing Incorporating Internet of Things (사물인터넷을 접목한 반도체 소자 공정 최적화 시뮬레이터 개발)

  • Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.35-41
    • /
    • 2017
  • With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.