• 제목/요약/키워드: Manifold Valve

검색결과 61건 처리시간 0.026초

차압에 따른 PCV 밸브 유동 특성에 관한 연구 (A Study on Flow Characteristics in a PCV valve according to Various Differential Pressures)

  • 이종훈;이연원;김재환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.230-231
    • /
    • 2005
  • As environmental problems are important, automotive industries are developing various techniques to prevent air pollution. One of these is Positive Crankcase Ventilation (PCV) system. It removes blowby gas which includes about 30% hydrocarbon of total generated quantity. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates differently according to various operating conditions of an automotive engine. As this valve is very important, designers are feeling to design it because of both small size and high velocity. For this reason, we numerically investigated to understand both spool dynamic motion and internal fluid flow characteristics. As the results, spool dynamic characteristics, i.e. displacement, velocity, acting force, increase in direct proportion to the magnitude of differential pressure and indicate periodic oscillating motions. And, the velocity at the orifice region decreases according to the increase of differential pressure because of energy loss which is caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in the front of spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement. We expect that PCV valve designers can easily understand fluid flow inside a PCV valve with our visual information for their help.

  • PDF

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

Stroke 변화가 Four-Valve SI 기관 실린더내 난류 운동에너지에 미치는 영향 (Effects of Stroke Change on Turbulent Kinetic Energy for the In-Cylinder Flow of a Four-Valve SI Engine)

  • 유성출
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.16-21
    • /
    • 2011
  • The effects of stroke change on turbulent kinetic energy for the in-cylinder flow of a four-valve SI engine were studied. For this study, the same intake manifold, head, cylinder, and the piston were used to examine turbulence characteristics in two different strokes. In-cylinder flow measurements were conducted using three dimensional LDV system. The measurement method, which simultaneously collects 3-D velocity data, allowed a evaluation of turbulent kinetic energy inside a cylinder. High levels of turbulent kinetic energy were found in regions of high shear flow, attributed to the collisions of intake flows. These specific results support the more general conclusion that the inlet conditions play the dominant role in the generation of the turbulence fields during the intake stroke. However, in the absence of two counter rotating vortices, this intake generated turbulent kinetic energy continues to decrease but at a much faster rate.

Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향 (Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines)

  • 유성출
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

과도운전시 가솔린기관의 성능평가 (Evaluation of Transient Performance of Carburettered Gasoline Engine)

  • 조규상;류정인
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.1-11
    • /
    • 1993
  • An experimental study was carried out to evaluate the characteristics of transient performance of carburettered gasoline engine under rapid accelerating transient driving conditions. In order to evaluate the characteristics of transient performance quantitatively, the concept of dead time $t_d$ response delay time $t_r$ are introduced. Performance parameters such as air mass fiowrate Gat, engine speed N, manifold boost pressure Pb, and output torque T are measured simultaneously during the rapid opening of the throttle valve by the stepping motor. During the rapid opening of the throttle valve, air mass fiowrate Gat is increased immediately without delay time, but response of engine revolution N, and output torque T are delayed. Therefore hesitation, and stumble phenomena are occurred. Dead time $t_d$ and response delay time $t_r$ of engine revolution N, which is extremely delayed comparing to other performance parameters, are respectively 0.2-0.3sec., 3.0-4.6sec., and dead time rate $t_d/{\Delta}t$ and response delay time rate $t_r/{\Delta}t$ are linearly increased with the throttle valve opening rate ${\theta}$ during the acceleration from 12 degree to 20 degree at 1250rpm.

  • PDF

수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화 (Flow Visualization of Plastic type PCV Valve with Horizontal Force)

  • 최윤환;이연원
    • 한국가시화정보학회지
    • /
    • 제10권1호
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

LPLi엔진에서의 LPG 연료 조성비가 개별탄화수소 배출특성과 시동성에 미치는 영향에 대한 연구 (An Experimental Study on Individual HC Emission Characteristics and Startability for Various Composition Ratio of LPG Fuel on LPLi Engine)

  • 최성원;곽호철;명차리;박심수
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.234-241
    • /
    • 2007
  • The regulations for hydrocarbon emission from vehicles have become much more stringent in recent years. These more stringent regulations request vehicle manufacturers to develop the advanced exhaust system for reducing exhaust emissions. The exhaust emissions has many sources in vehicle. In order to investigate the characteristics of hydrocarbon(HC) in the exhaust manifold, concentrations of individual HC species were measured in exhaust process. Using sampling valve, the light hydrocarbon emissions were captured in the exhaust manifold(catalyst before and after) and analyzed from LPLi engine exhaust manifold(catalyst before and after) using different fuel properties. Then exhaust samples were measured by gas chromatography(GC) and exhaust gas analyzer. Catalyst conversion efficiency for fuel properties of Butane 100% was better than Propane 100%. Start delay of LPLi engine was observed as increment of propane contents in LPG fuels.

단기통 엔진의 흡.배기계의 압력 변동에 관한 연구 (Pressure Variations in Intake and Exhaust Manifold of a Single Cylinder Engine)

  • 최석천;이용훈;이상철;정한식;이광영;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.775-780
    • /
    • 2003
  • In this study, a computer analysis has been developed for predicting the pipe pressure of the intake and exhaust manifold in a single cylinder engine. To get the boundary conditions for a numerical analysis, one dimensional and unsteady gas dynamic calculation is performed by using the MOC(Method Of Characteristic). The main numerical parameters are the variation of the exhaust pipe diameters to calculate the pulsating flow when the intake and exhaust valves are working. As the results of numerical analysis, the shapes and distributions of the exhaust pipe pressures were influenced strongly on the cylinder pressure. As the exhaust pipe diameter is decreased, the amplitude of exhaust pressure is large and the cylinder pressure was showed low in the region of intake valve opening time.

  • PDF

자동차용 PCV밸브내 유통특성에 의한 밸브응력 및 변형에 미치는 입출구 차압의 영향 (The Effect of In-Outlet Differential Pressure on a Valve Body Stress and Deformation by the Blow-by Gas Flow Characteristic in the PCV valve for Automobile)

  • 권오헌;이연원;송상민;이종훈;강지웅
    • 한국안전학회지
    • /
    • 제20권1호
    • /
    • pp.36-41
    • /
    • 2005
  • PCV(Positive Crankcase Ventilation) valve acts as a flow control valve to get a re-combustion of blow-by gas by having it flow from a crankcase to an inlet manifold suction tube. The blow-by gas of the crankcase should be eliminated or taken properly because it cause corrosion to critical parts, and contributes to increase crankcase pressure that can cause a drop in efficiency. The excessive stress and strain on the PCV valve that remove these harmful gas would be bring the difficult on the flow rate control and failure of the valve. Those condition inevitably induce the accident. Therefore, this study purpose is FEM evaluation of the stresses and deformation in the X3 PCV model according to the change of the differential pressure between inlet and outlet. From results, the maximum equivalent stresses increased linearly according to the increase of the differential pressure at the about 50mm from the inlet position and were under the yield strength of the valve. And the deformations were relatively small regardless of the in-outlet differential pressure variation.