• Title/Summary/Keyword: Manganese Sulfate

Search Result 72, Processing Time 0.018 seconds

Effects of Manganese Sulfate on Surface Layer Density and Color of Porcelain (망간황화물이 Porcelain의 표면층 밀도와 색상변화에 미치는 영향)

  • Kim, Nam-Heun;Park, Tae-Gyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.608-613
    • /
    • 2021
  • This study investigated the reaction between clay and Mn. Mn was coated using a manganese sulfate on porcelain plate and sintered from 1,100 ℃ to 1,250 ℃. The body begin to shrink around 950 ℃ with the increase in temperature and rapidly progressed after 1,100 ℃. Shrinkage of celadon body was performed at a lower temperature than for other substrates. Quartz, kaolin, and feldspar were the main crystalline phases of the starting materials, but they became mullite and crystobalite during the firing process, and some formed amorphous glass. When manganese sulfate was applied and fired, manganese oxide was fused, and some manganese oxide reacted with the substrate to show a dense microstructure different from that of the substrate; the substrate had pores. The manganese coated porcelain fired at 1,200 ℃ had L* values of 55.25, 36.87, and 37.13 for the white ware, celadon body, and white mixed ware, respectively; with a* values of 4.63, 3.07, and 2.15, and b* values of 7.93 and 3.98, it was found to be 3.42. This result indicated that the color of the surface was affected during firing by the chemical reaction between the substrate and manganese.

Catalytic Oxidation of Toluene by Manganese Oxide: (II) Support and Precursor Effect (망간 산화물에 의한 톨루엔 촉매 산화 반응: (II) 담체 및 전구물질 영향)

  • Cheon Tae-Jin;Choi Sung-Woo;Lee Chang-Soep
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • Catalytic oxidation of toluene in low concentrations was investigated over various supports. As the manganese oxides loading was increased, the conversion of toluene increased at a lower temperature. The 18.2 $wt\%$ $Mn/\gamma-Al_2O_3$ appeared to be the most active catalyst. Among the supports, $\gamma-Al_2O_3$ was more active than $TiO_2$ and $SiO_2$. Manganese oxide catalysts prepared from manganese nitrate precursor were better for complete oxidation of toluene than those prepared from manganese sulfate and chloride precursor because sulfate from manganese sulfate and chloride from chloride manganese remained even after the calcination by XRD (X-Ray Diffraction) analyses.

Thermal analysis of anodically deposited manganese oxide film (Anodic deposition된 $MnO_2$ 막의 열분석 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.900-903
    • /
    • 2003
  • Using $DV-X{\alpha}$ method, it is calculated that nickel reduces the energy band gap of manganese oxide in 3 additives of titanium, nickel and tin. Therefore, it is estimated that the electrical conductivity of manganese-nickel oxide has the lowest value in 3 kinds of manganese oxide. The manganese oxide and manganese-nickel oxide which were produced by anodic deposition under $30mA/cm^2$ at room temperature in manganese sulfate and manganese-nickel sulfate solution were thermal-analyzed by DTA and TGA. The weight change of manganese oxide continuously decreased below $508^{\circ}C$ and kept constant at $518{\sim}600^{\circ}C$. However, the manganeses-nickel oxide transformed at the temperature range of $510{\sim}537^{\circ}C$. It is observed that the nickel addition to manganese oxide increases transformation temperature and its range.

  • PDF

The Optimal Producing Conditions of Bacteriocin Produced by Lactobacillus sp. FF-3 Isolated from Korean Dongchimi (동치미에서 분리한 Lactobacillus sp. FF-3가 생산하는 bacteriocin의 최적 생산조건)

  • 박진철;차재영;권오창;조영수
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.554-559
    • /
    • 2003
  • The optimal culture conditions on bacteriocin producing of Lactobacillus sp. FF-3 isolated from Korean Dongchimi, were studied for enhancing its production with regard to environmental and nutritional factors. The optimal cultivation time, initial pH and temperature were 21 hours, pH 7.0 and 30∼37$^{\circ}C$ respectively. Optimal compositions of culture medium for bacteriocin production were glucose 3% as carbon source, tryptone 4% as nitrogen source, and manganese sulfate 0.005% as inorganic salt with other basal components. The maximum antimicrobial activity was 484 BU/mL under the optimal culture condition.

Studies on the Preparation of Pink Stain using Manganese Sulfate (황산망간을 이용한 분홍색 착색료의 제조연구)

  • 이준선
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.4
    • /
    • pp.37-42
    • /
    • 1974
  • Preparation of pink color stains was studied using manganese sulfate and aluminum salts. As the results obtained in this study, the composition range of the stains showing favorable pink celor was as follows: MnO.0.5-0.8P2O5.1.70-3.00 Al2O3 Furthermore, as the results of applied tests for glazes and the color measured by Color Eye, the usefulness of the stains was approved.

  • PDF

Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein (Pseudomonas sp. MN5의 특성과 망간산화단백질 정제)

  • Lee, Seung-Hui;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2008
  • Bacterial colonies which were able to oxidize the manganese were isolated from six soil samples in Byungchon area. Among them, one bacterial strain was selected for this study based on its high manganese oxidation activity. This selected bacterial strain was identified as Pseudomonas sp. MN5 through physiological-biochemical test and analysis of its 16s rRNA sequence. This selected bacterial strain was able to utilize fructose and maltose, but they doesn't utilizing various carbohydrates as a sole carbon source. Pseudomonas sp. MN5 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, streptomycin and tetracycline, but a high resistance up to mg/ml unit to heavy metals such as lithium, manganese and barium. Optimal manganese oxidation condition of Pseudomonas sp. MN5 was pH 7.5 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. The manganese oxidizing protein produced by Pseudomonas sp. MN5 was purified by ammonium sulfate precipitation, HiTrap Q FF anion exchange chromatography and G3000sw $_{XL}$ gel filtration chromatography. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, three manganese oxidizing protein with estimated molecular weights of 15 kDa, 46.7 kDa and 63.5 kDa were detected. Also, it was estimated that manganese oxidizing protein produced by Pseudomonas sp. MN5 were a kind of porin proteins through internal sequence and N-terminal sequence analysis.

Electrochemical Performance of LiMn2O4 Cathodes in Zn-Containing Aqueous Electrolytes

  • Kamenskii, Mikhail A.;Eliseeva, Svetlana N.;Volkov, Alexey I.;Kondratiev, Veniamin V.
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 2022
  • Electrochemical properties of LiMn2O4 cathode were investigated in three types of Zn-containing electrolytes: lithium-zinc sulfate electrolyte (1M ZnSO4 / 2M Li2SO4), zinc sulfate electrolyte (2MZnSO4) and lithium-zinc-manganese sulfate electrolyte (1MZnSO4 / 2MLi2SO4 / 0.1MMnSO4). Cyclic voltammetry measurements demonstrated that LiMn2O4 is electrochemically inactive in pure ZnSO4 electrolyte after initial oxidation. The effect of manganese (II) additive in the zinc-manganese sulfate electrolyte on the electrochemical performance was analyzed. The initial capacity of LiMn2O4 is higher in presence of MnSO4 (140 mAh g-1 in 1 M ZnSO4 / 2 M Li2SO4 / 0.1 M MnSO4 and 120 mAh g-1 in 1 M ZnSO4 / 2MLi2SO4). The capacity increase can be explained by the electrodeposition of MnOx layer on the electrode surface. Structural characterization of postmortem electrodes with use of XRD and EDX analysis confirmed that partially formed in pure ZnSO4 electrolyte Zn-containing phase leads to fast capacity fading which is probably related to blocked electroactive sites.

A Study on the Manganese Oxidation and Characteristics of Aeromonas sp (Aeromonas sp. MN44의 특성과 망간 산화에 관한 연구)

  • Koo Jong Seo;Park Kyeong Ryang
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.94-99
    • /
    • 2005
  • Sixty four bacterial colonies which were able to oxidize the manganese were isolated from soil samples in Mokcheon and Ochang area. Among them, one bacterial strain was selected for this study based on its higher manganese oxidation, and this selected bacterial strain was identified as Aeromonas sp. MN44 through physiological-biochemical test and analysis of its 16s rRNA sequence. Aeromonas sp. MN44 was able to utilize lactose but did not utilize various carbohydrates as a sole carbon source. Aeromonas sp. MN44 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, ampicillin, tetracycline and spectinomycin, and heavy metal such as cadmium. But this strain showed a high resistance up to mg/ml unit to heavy metals such as lithium and manganese. Optimal manganese oxidation condition of Aeromonas sp. MN44 was pH 7.4 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. So, we concluded that this factor was protein. The manganese oxidizing factor produced by Aeromonas sp. MN44 was partial purified by ammonium sulfate precipitation, DEAE-Toyopearl 650M ion exchange chromatography and Sephadex gel filtration chromatography. Its molecular mass was about 113 kDa.

Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea (동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교)

  • You, Ok-Rye;Mok, Jin-Sook;Kim, Sung-Han;Choi, Dong-Lim;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

A Study on the Recovery of Mn Component from the Spent Manganese Batteries with Ammonium Sulfate (廢 망간電池로부터 黃酸 암모늄에 의한 Mn 성분의 분리 회수에 관한 연구)

  • 박용성;우제원;황영애
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.3-8
    • /
    • 2000
  • A reaction between the depolarizing mixture in the spent manganese batteries and ($NH_4$)$_2$$SO_4$was carried out to find a new process for the extraction of Mn component from the spent manganese batteries. The optimum conditions were as follows : the reaction temperature $425^{\circ}C$, ($NH_4$)$_2$$SO_4$weight ratio to the depolarizing mixture in the spent manganese batteries 12.0, reaction time 60 min. Under above conditions manganese was extracted 93.5%.

  • PDF