• Title/Summary/Keyword: Management groundwater level

Search Result 168, Processing Time 0.03 seconds

Development of the assessment method for weekly groundwater resources management vulnerability using the correlation between groundwater level and precipitation considering critical infiltration concept (한계 침투량을 고려한 강우와 지하수위의 상관관계를 이용한 주 단위 지하수자원 관리 취약시기 평가 방법 개발)

  • Lee, Jae-Beom;Yang, Jeong-Seok;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1237-1245
    • /
    • 2018
  • We developed the assessment method for weekly groundwater resources management vulnerability. To consider the effect of precipitation on groundwater level, we calculated correlation coefficient between groundwater level and precipitation applying critical infiltration concept. We developed the vulnerability assessment criteria and calculated weights for criteria using the entropy method. Weekly groundwater resources management vulnerability of small administrative districts were estimated using developed method in this research. The developed method can be a basis for the establishment of the spatio-temporal groundwater resources management plan.

Evaluation of the future monthly groundwater level vulnerable period using LSTM model based observation data in Mihostream watershed (LSTM을 활용한 관측자료 기반 미호천 유역 미래 월 단위 지하수위 관리 취약 시기 평가)

  • Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.481-494
    • /
    • 2022
  • This study proposed a evaluation of the monthly vulnerable period for groundwater level management in the Miho stream watershed and a technique for evaluating the vulnerable period for future groundwater level management using LSTM. Observation data from groundwater level and precipitation observation stations in the Miho stream watershed were collected, LSTM was constructed, predicted values for precipitation and groundwater levels from 2020 to 2022 were calculated, and future groundwater management was evaluated when vulnerable. In order to evaluate the vulnerable period of groundwater level management, the correlation between groundwater level and precipitation was considered, and weights were calculated to consider changes caused by climate change. As a result of the evaluation, the Miho stream watershed showed high vulnerability to underground water management in February, March, and June, and especially near the Cheonan Susin observation well, the vulnerability index for groundwater level management is expected to deteriorate in the future. The results of this study are expected to contribute to the evaluation of the vulnerable period of groundwater level management and the derivation of preemptive countermeasures to the problem of groundwater resources in the basin by presenting future prediction techniques using LSTM.

A Study on the Determination of Management Groundwater Level on Jeju Island (제주도 지하수 관리수위 설정에 관한 연구)

  • Kim Ji-Wook;Koh Gi-Won;Won Jong-Ho;Han Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.12-19
    • /
    • 2005
  • Jeju island is one of the highest rainfall areas in the Korean peninsular. However, variation in rainfall amount is much great with years, which resulted in substantial variation in annual groundwater recharge and sustainable yield. Therefore, to cope with groundwater hazard including sea water intrusion and water level decline in accordance with successive extreme drought, Jeju province established a stepwise action system, in which management of representative monitoring wells and corresponding actions to water level conditions was enforced. In this study, rainfall and groundwater monitoring data were analyzed to determine management groundwater level on Jeju island. First, rainfall data for last 30 years were analyzed, which yielded a lower limit of rainfall at a confidence level of 99% as a basis rainfall. Only when the rainfall less than the basis rainfall was sustained over 3 months, the water levels were targeted for the analysis. For the water level data selected using the above criteria, the lower limit of 99% confidence interval was determined as a reference groundwater level. Finally, some ratios of reference groundwater level was determined as stepwise management groundwater level on Jeju island.

Forecast Groundwater Level for Management with Neural Network and Fuzzy sets

  • Wang, Yunqing;Yang, Liping
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1175-1176
    • /
    • 1993
  • This paper introduces a new model for forecasting groundwater level on the basis of analysing defect of finite element method. The new model is built with fuzzy sets and neural networks. It is convenient for use. We computed the groundwater level of one city in P. R. China with it and got a very satisfactory result. It can be popularized to corecast groundwater level of mine.

  • PDF

Proposal for the groundwater based countermeasures to secure water resources considering regional characteristics of water resources vulnerable areas (국내 수자원 이용 취약지역의 지역 특성을 고려한 지하수 기반 수자원 확보 방안 제시)

  • Kim, Geon;Lee, Jae-Beom;Agossou, Amos;Yang, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.3
    • /
    • pp.191-203
    • /
    • 2022
  • This study is a follow-up study of vulnerable areas according to the vulnerability assessment of groundwater resource management in Korea. In this study, an optimal operation plan for groundwater resource management was proposed for areas vulnerable to groundwater resource management in Korea derived from previous studies. Prior to presenting the optimal operation plan for groundwater resource management, this study grasped the current status of changes in groundwater level and seawater penetration area for vulnerable areas using MODFLOW, a groundwater flow analysis program. As a result of the analysis using basic data for 10 years from 2009 to 2018, the groundwater level fell and the sea infiltration area increased. The final purpose of this study, the optimal operation plan for groundwater resource management, was selected as a total of four alternatives that can be expected to have positive effects to increase groundwater level and reduce seawater penetration. As a result of analyzing the amount of change in groundwater level and seawater penetration by applying the selected optimal operation plan, positive effects were found in all methods. It is expected that the optimal operation plan for groundwater resource management proposed in this study will be applied not only to vulnerable areas of groundwater resources in Korea but also to areas requiring development to establish efficient groundwater resource management measures.

Determination of Proper Probability Distribution for Groundwater Monitoring Stations in Jeju Island (제주도 지하수위 관측지점별 적정 확률분포형의 결정)

  • Chung, Il-Moon;Nam, Woosung;Kim, Min Gyu;Choi, Gian;Kim, Gee-Pyo;Park, Yun-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • Comprehensive statistical analysis for the 127 groundwater monitoring stations in Jeju Island during 2005~2015 was carried out for the re-establishment of management groundwater level. Three probability distribution functions such as normal distibution, GEV (General Extreme Value) distribution, and Gumbel distribution were applied and the maximum likelihood method was used for parameter estimation of each distribution. AIC (Akaike information criterion) was calculated based on the estimated parameters to determine the proper probability distribution for all 127 stations. The results showed that normal distribution and Gumble distribution were found in 11 stations. Whereas GEV distribution were found in 105 stations, which covered most of groundwater monitoring stations. Therefore, confidence levels should be established in accord with the proper probability distribution when groundwater level management is determined.

Changes of soil water content and soybean (Glycine max L.) response to groundwater levels using lysimeter

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.299-299
    • /
    • 2017
  • Due to the climate changes in Korea, the numbers of both torrential rain events and drought periods have increased in frequency. Water management practice against water shortage and flooding is one of the key interesting for field crop cultivation, and groundwater often serves as an important and safe source of water to crops. Therefore, the objective of this study is to evaluate the effect of groundwater table levels on soil water content and soybean development under two different textured soils. The experiment was conducted using lysimeter located in Miryang, Korea. Two types of soils (sandy-loam and silty-loam) were used with three groundwater table levels (0.2, 0.4, 0.6m). Mean soil water content during the soybean growth period was significantly influenced by groundwater table levels. With the continuous groundwater level at 0.2m from the soil surface, soil water content was not statistically changed between vegetative and reproductive stage, but the 0.4 and 0.6m groundwater table level was significantly decreased. Lower chlorophyll content in soybean leaves was found in shallow water table treatment in earlier part of the growing season, but the chlorophyll contents were non-significant among water table treatments. Groundwater table level treatments were significantly influenced on plant available nitrogen content in surface soil. The highest N contents were observed in 0.6m groundwater table level. It is probably due to the nitrogen loss by denitrification as the result of high soil water content. The length and dry weight of primary root was influenced by groundwater level and thus the highest length and dry weight of root were observed in 0.6m water table level. This result showed that soybean root growth did not extend below the groundwater level and increased with the depth of groundwater table level. The results of this study show that the management of groundwater level can influence on soil characteristics, especially on soil water content, and it is an important practice of to reduce yield loss caused by the water stress during the crop growing season.

  • PDF

Performance Comparison of LSTM-Based Groundwater Level Prediction Model Using Savitzky-Golay Filter and Differential Method (Savitzky-Golay 필터와 미분을 활용한 LSTM 기반 지하수 수위 예측 모델의 성능 비교)

  • Keun-San Song;Young-Jin Song
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.84-89
    • /
    • 2023
  • In water resource management, data prediction is performed using artificial intelligence, and companies, governments, and institutions continue to attempt to efficiently manage resources through this. LSTM is a model specialized for processing time series data, which can identify data patterns that change over time and has been attempted to predict groundwater level data. However, groundwater level data can cause sen-sor errors, missing values, or outliers, and these problems can degrade the performance of the LSTM model, and there is a need to improve data quality by processing them in the pretreatment stage. Therefore, in pre-dicting groundwater data, we will compare the LSTM model with the MSE and the model after normaliza-tion through distribution, and discuss the important process of analysis and data preprocessing according to the comparison results and changes in the results.

  • PDF

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

Reduction of Groundwater Licences for Groundwater Management Areas in Jeju Island (제주도 지하수특별관리구역의 지하수이용허가권 조정방안)

  • Yang, Yun-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.839-845
    • /
    • 2007
  • It is necessary to draw up many plans to solve problems in the management of groundwater resources in Jeju Island while systematically develop and utilize water resources at an optimal level. It also seems to an evitable option to establish Groundwater Management Areas in Jeju Island. The excess use of groundwater could be discouraged by imposing charges on those licenses. Such policy as allowance trading system do not appear to be because of transaction costs, but could be applied if only were accompanied by complementary method. The methods of using and conserving the limited resources of groundwater should be founded through socially agreeable and appropriate ways. The policy complemented allowance trading system by Pigouian tax could be effective to regulate licenses. This is cutting the numbers of licenses at a constant rate, imposing charges on those who want to continue using licenses, and reimbursing in cash to those who return the licenses.