• 제목/요약/키워드: Mammary Development

검색결과 130건 처리시간 0.02초

정제봉독의 MAC-T 세포에서 유단백 합성 촉진효과 (Stimulation of the milk protein production in MAC-T cells by purified bee venom)

  • 한상미;우순옥;김세건;장혜리
    • 한국동물위생학회지
    • /
    • 제41권3호
    • /
    • pp.171-177
    • /
    • 2018
  • Purified bee venom was collected from colonies of honeybees (Apis mellifera L.) using a bee venom collector under sterile conditions and then purified under strict laboratory conditions. Purified bee venom contained $63.9{\pm}5.4%$ melittin, $10.9{\pm}1.6%$ phospholipase A2, and $2.3{\pm}0.3%$ apamin. Purified bee venom has various anti-bacterial, anti-inflammatory and immunostimulating effects. In this study, we evaluated purified bee venom which are mammary gland cells, MAC-T cells are used to increase the synthesis of milk protein. Purified bee venom promoted the proliferation of MAC-T cells at concentrations below $1{\mu}g/mL$, but cytotoxicity at $10{\mu}g/mL$ and above. As a result of the increase in the synthesis of ${\beta}-casein$, a milk protein after treatment with MAC-T cells at a concentration of the bee venom without cytotoxicity, the ${\beta}-casein$ content in the cell culture was increased when treated at a concentration of 1 ng/mL or more. In addition, it was confirmed that purified bee venom significantly increased the expression of bovine ${\beta}-casein$ (bCSNB) mRNA, a ${\beta}-casein$ synthesis gene, at a concentration of 1 ng/mL or more. These results suggest that purified bee venom can be used to increase the production of livestock by ultimately increasing the expression of milk protein.

PKA-Mediated Stabilization of FoxH1 Negatively Regulates ERα Activity

  • Yum, Jinah;Jeong, Hyung Min;Kim, Seulki;Seo, Jin Won;Han, Younho;Lee, Kwang-Youl;Yeo, Chang-Yeol
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.67-71
    • /
    • 2009
  • Estrogen receptor ${\alpha}$ ($ER{\alpha}$) mediates the mitogenic effects of estrogen. $ER{\alpha}$ signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled $ER{\alpha}$ activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent $ER{\alpha}$ activation, thereby facilitating $ER{\alpha}$ dimerization, promoter binding and coactivator recruitment. $ER{\alpha}$ can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several $ER{\alpha}$-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses $ER{\alpha}$ transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate $ER{\alpha}$, at least in part, through FoxH1.

A retrospective study of age-specific disease incidence in major popular breed dogs in Republic of Korea

  • Seung-Won Yi;Sang-Ik Oh;Yoon Jung Do;Jae Gyu Yoo;Eunju Kim
    • 대한수의학회지
    • /
    • 제63권4호
    • /
    • pp.34.1-34.9
    • /
    • 2023
  • Dogs exhibit patterns of health issues that vary by life stage. An understanding of disease incidence with respect to breed and age/life stage could be an important component of canine health management and welfare. This study aimed to describe the age-specific disease incidence of 3 small dog breeds that attended veterinary clinics in the Republic of Korea, based on data from electronic veterinary medical records (EVMRs). A total of 40,785 EVMRs from Maltese (n = 21,355), Miniature Poodle (n = 11,658) and Shih Tzu dogs (n = 7,772) were analyzed. Common health problems in 3 small dog breeds were 'diseases of the skin' and 'diseases of the ear,' respectively. Among dogs aged ≤ 3 years, 'preventive medicine' was the most common cause cited for veterinary clinic visits. Among dogs aged 4 to 8 years, the most frequent health problems were 'diseases of the skin.' Among dogs aged 9 to 13 years, 'heart diseases,' 'kidney diseases,' 'mammary gland tumor,' and 'neoplasia (unspecified)' were considerably more frequent, compared to the rates in dogs ≤3 years. Among dogs aged ≥ 14 years, 'heart diseases' and 'sneezing/cough' were the main health problems. In all breeds, the frequencies of 'diseases of circulatory system,' 'diseases of respiratory system,' 'diseases of the nervous system,' 'endocrine' and 'neoplasia' increased rapidly with aging. This surveillance could inform strategies for disease screening tests and management based on life stage in these dog breeds and enable more effective health management.

Functional Amino Acids and Fatty Acids for Enhancing Production Performance of Sows and Piglets

  • Kim, Sung Woo;Mateo, Ronald D.;Yin, Yu-Long;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권2호
    • /
    • pp.295-306
    • /
    • 2007
  • The growth and health of the fetus and neonate are directly influenced by the nutritional and physiological status of sows. Sows are often under catabolic conditions due to restrict feeding program during pregnancy and low voluntary feed intake during lactation. The current restrict feeding program, which aims at controlling energy intake during gestation, results in an inadequate supply of dietary protein for fetal and mammary gland growth. Low voluntary feed intake during lactation also causes massive maternal tissue mobilization. Provision of amino acids and fatty acids with specific functions may enhance the performance of pregnant and lactating sows by modulating key metabolic pathways. These nutrients include arginine, branched-chain amino acids, glutamine, tryptophan, proline, conjugated linoleic acids, docosahexaenoic acid, and eicosapentaenoic acid, which can enhance conception rates, embryogenesis, blood flow, antioxidant activity, appetite, translation initiation for protein synthesis, immune cell proliferation, and intestinal development. The outcome is to improve sow reproductive performance as well as fetal and neonatal growth and health. Dietary supplementation with functional amino acids and fatty acids holds great promise in optimizing nutrition, health, and production performance of sows and piglets. (Supported by funds from Texas Tech, USDA, NLRI-RDA-Korea, and China NSF).

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.

Effect of all-trans retinoic acid on casein and fatty acid synthesis in MAC-T cells

  • Liao, Xian-Dong;Zhou, Chang-Hai;Zhang, Jing;Shen, Jing-Lin;Wang, Ya-Jing;Jin, Yong-Cheng;Li, Sheng-Li
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.1012-1022
    • /
    • 2020
  • Objective: Caseins and fatty acids of milk are synthesized and secreted by the epithelial cells of the mammary gland. All-trans retinoic acid (ATRA), an active metabolite of vitamin A, has been shown to promote mammary development. This study was conducted to determine the effect of ATRA on casein synthesis and fatty acid composition in MAC-T cells. Methods: MAC-T cells were allowed to differentiate for 4 d, treated with ATRA (0, 1.0, 1.5, and 2.0 μM), and incubated for 3 d. We analyzed the fatty acid composition, the mRNA expression of casein and fatty acid synthesis-related genes, and the phosphorylation of casein synthesis-related proteins of MAC-T cells by gas chromatography, quantitative polymerase chain reaction, and western blotting, respectively. Results: In MAC-T cells, ATRA increased the mRNA levels of αS1-casein and β-casein, janus kinase 2 (JAK2) and E74-like factor 5 of the signal transducer and activator of transcription 5 β (STAT5-β) pathway, ribosomal protein S6 kinase beta-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 of the mammalian target of rapamycin (mTOR) pathway, inhibited the mRNA expression of phosphoinositide 3-kinase and eukaryotic initiation factor 4E of the mTOR pathway, and promoted the phosphorylation of STAT5-β and S6K1 proteins. Additionally, ATRA increased the de novo synthesis of fatty acids, reduced the content of long-chain fatty acids, the ratio of monounsaturated fatty acids to saturated fatty acids (SFA), the ratio of polyunsaturated fatty acids (PUFA) to SFA, and the ratio of ω-6 to ω-3 PUFA. The mRNA levels of acetyl-CoA carboxylase 1, fatty acid synthase, lipoprotein lipase, stearoyl-CoA desaturase, peroxisome proliferator-activated receptor gamma, and sterol regulatory element-binding protein 1 (SREBP1) were enhanced by ATRA. Conclusion: ATRA promotes the synthesis of casein by regulating JAK2/STAT5 pathway and downstream mTOR signaling pathway, and it improves the fatty acid composition of MAC-T cells by regulating SREBP1-related genes.

봉독의 젖소 유방염 유래 그람 양성 및 음성 세균별 항균효과 분석 (Antibacterial effect of bee venom against Gram-positive and negative bacteria isolated from mastitis in dairy cattle)

  • 정숙한;오상익;이한규;정영훈;허태영;한상미;백귀정;조아라
    • 한국동물위생학회지
    • /
    • 제44권3호
    • /
    • pp.169-174
    • /
    • 2021
  • Mastitis is an inflammatory condition of the mammary gland, most often caused by bacterial infections, resulting in significant economic losses to the dairy industry. Antimicrobial resistance has been of great concern because of the extensive clinical use of antibiotics. For this reason, the development of new compounds as an alternative treatment to bovine mastitis is needed. Bee venom has been widely used as an oriental treatment for several inflammatory diseases and bacterial infections. The aim of the present study was to evaluate the antimicrobial activity of bee venom on bacteria isolated from bovine mastitis. A total of 107 isolates from bovine mastitic milk samples collected in 2019 and 2020 in Jeonbuk province. All bacterial isolates were tested for susceptibility to bee venom of the honey bee (Apis mellifera). In order to obtain comprehensive antibacterial activities of the bee venom, we measured the minimal inhibitory concentration (MIC) of the bee venom against bacterial strains. Bee venom showed significant inhibition of bacterial growth of Gram-negative bacteria Citrobacter spp., Escherchia coli, Klebsiella spp., Pseudomonas spp., Serratia spp. and Raoultella with MIC values of 96, 81, 72, 230, and 85 ㎍/mL, respectively, and Gram-positive bacterial Enterococcus spp., Staphylococcus spp. and Streptococcus spp. with MIC values of 29, 21 and 16 ㎍/mL, respectively. The results indicated that the MIC values were different depending on the bacterial strains, and those of Gram-positive bacteria were lower than those of Gram-negative bacteria for bee venom. These findings suggested that bee venom could be an effective antimicrobial treatment for bovine mastitis; however, further research is necessary to evaluate the mechanism underlying the antimicrobial action, its effectiveness/safety in vivo and effective application for therapeutic use.

Association of rs1219648 in FGFR2 and rs1042522 in TP53 with Premenopausal Breast Cancer in an Iranian Azeri Population

  • Saadatian, Zahra;Gharesouran, Jalal;Ghojazadeh, Morteza;Ghohari-Lasaki, Sahar;Tarkesh-Esfahani, Najime;Ardebili, Seyyed Mojtaba Mohaddes
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7955-7958
    • /
    • 2014
  • Breast cancer is the most common cancer among women in the world. In Iran, the incidence of breast cancer is on the increase. We here studied the association of rs1219648 in FGFR2 and rs1042522 in TP53 and their interaction in development of early onset sporadic breast cancer in Iranian Azeri population to evaluate epistatic effects on the risk of mammary neoplasia. We genotyped the two polymorphisms in 100 women with early onset breast cancer and 100 healthy women by PCR-RFLP. Allele frequency differences were tested using $chi^2$-test with 95% confident intervals. Our results indicated a statistically significant association (p<0.05) between rs1219648, but not rs1042522, and risk of breast cancer. We also found that the combination of FGFR2 major genotype and TP53 hetero genotype had protective effects against breast cancer, while the hetero allele of FGFR2 in combination with the minor genotype of TP53 was associated with a high risk. This study revealed an important crosstalk between two polymorphisms in FGFR2 and TP53 in development of breast cancer. These candidates risk variants should be further evaluated in studies with a larger sample size.

Knocking-in of the Human Thrombopoietin Gene on Beta-casein Locus in Bovine Fibroblasts

  • Chang, Mira;Lee, Jeong-Woong;Koo, Deog-Bon;Shin, Sang Tae;Han, Yong-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권6호
    • /
    • pp.806-813
    • /
    • 2010
  • Animal bioreactors have been regarded as alternative tools for the production of limited human therapeutic proteins. The mammary glands of cattle are optimal tissues to produce therapeutic proteins that cannot be produced in large amounts in traditional systems based on microorganisms and eukaryotic cells. In this study, two knock-in vectors, pBCTPOKI-6 and pBCTPOKI-10, which target the hTPO gene on the bovine beta-casein locus, were designed to develop cloned transgenic cattle. The pBCTPOKI-6 and pBCTPOKI-10 vectors expressed hTPO protein in culture medium at a concentration of 774 pg/ml and 1,867 pg/ml, respectively. Successfully, two targeted cell clones were obtained from the bovine fibroblasts transfected with the pBCTPOKI-6 vector. Cloned embryos reconstructed with the targeted nuclei showed a lower in vitro developmental competence than those with the wild-type nuclei. After transfer of the cloned embryos into recipients, 7 pregnancies were detected at 40 to 60 days of gestation, but failed to develop to term. The results are the first trial for targeting of a human gene on the bovine milk protein gene locus, providing the potential for a large-scale production of therapeutic proteins in the animal bioreactor system.