• Title/Summary/Keyword: Mammalian chromosomal aberration test

Search Result 29, Processing Time 0.028 seconds

Genotoxicity study of Aralia elata extract in bacterial and mammalian cell system (두릅나무 추출물의 유전독성평가)

  • 정영신;이석종;최선아;이장하;류재천;홍은경
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.319-323
    • /
    • 2002
  • In order to investigate the safety of Aralia elata extract causing the reduction in the blood glucose level and oxidative stress in diabetes animals, these genotoxicity studies in bacterial and mammalian cell assay system such as Ames bacterial reverse mutation test and chromosomal aberration assay were performed. As results, in Ames bacterial reversion assay the extract in the range of 5,000-625 ug/plate did not induce mutagenicity in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains with and without metabolic activation of S-9 mixture. For chromosomal aberration assay, $IC_{50}$ (50% inhibition concentration of cell growth) of the extract were determined; 792 $\mu\textrm{g}$/$m\ell$ without and 524 $\mu\textrm{g}$/$m\ell$ with S-9 mixture in Chinese hamster lung (CHL) fibroblast cell culture. Any significant chromosomal aberration was not observed in CHL cells treated with the extract at the concentrations of 792, 396 and 198 $\mu\textrm{g}$/$m\ell$ or 524, 262 and 131 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation, respectively. From these results, Aralia elata extract did not induce any harmful effects on the gene in bacteria and mammalian cell system used in these experiments.

  • PDF

Mutagenicity Study of (R)-JG-381, A New Antidiabetic Agent (항당뇨물질 (R)-JG-381의 변이원성 시험)

  • 오우용;주상섭;박형근;함광수;조장섭;이선미
    • Biomolecules & Therapeutics
    • /
    • v.8 no.3
    • /
    • pp.248-254
    • /
    • 2000
  • (R)-JG-381, a R form of alkylglycidic acid derivative, was examined for mutagenicity in the reverse mutation test on bacteria, chromosomal aberration test on cultured mammalian cells and micronucleus test in mice. In the reverse mutation test on bacteria using Salmonella typhimurium strain TA98, TA100, TA102, TA1535, TA1537 with or without a metabolic activation system (S9 mix), (R)-JG-381 did not affect the revertant colonies but significantly increased revertant colonies in one test strain, TA98, compared with the vehicle control. In the chromosomal aberration (CA) test using cultured Chinese Hamster Lung fibroblast(CHL) cells, the number of aberrant cells was clot increased in the presence or absence of 59 mix at concentration of the (R)-JG-381 0.025 $\mu$l/m1 to 0.1 $\mu$l/m1, compared with vehicle control. In the micronucleus (MN) test, micronucleated polychromatic erythrocytes in the (R)-JG-381-treated mice were not different from those of the vehicle-treated mice.

  • PDF

Toxicity Assessment of a No-Pain Pharmacopuncture Extract Using a Standard Battery of In Vitro Chromosome Aberration Tests

  • Ji Hye Hwang
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2024
  • Objectives: Genotoxicity is evaluated through a chromosomal aberration test using cultured mammalian cells to determine the toxicity of no-pain pharmacopuncture (NPP), which has recently been used to treat musculoskeletal pain disorders in Korean medical clinical practice. Methods: An initial test was performed to determine the dosage range of the NPP, followed by the main test. In this study, NPP doses of 10.0, 5.0, and 2.5%, and negative and positive controls were tested. An in vitro chromosome aberration test was performed using Chinese hamster lung cells under short-term treatment with or without metabolic activation and under continuous treatment without metabolic activation. Results: Compared with the saline negative control group, NPP did not significantly increase the frequency of chromosomal abnormalities in Chinese hamster lung cells, regardless of the presence or absence of metabolic activation. Additionally, the number of cells with structural chromosomal abnormalities was significantly higher in the positive control group than that in the negative control group that received saline. Conclusion: Based on the above results, the chromosomal abnormality-producing effect of NPP was determined to be negative under these test conditions.

Genotoxicity Study of Sophoricoside, a Constituent of Sophora japonica, in Bacterial and Mammalian Cell System

  • Kim, Youn-Jung;Park, Hyo-Joung;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to has an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial reversion test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay. As results, in the range of 1,250~40 $\mu\textrm{g}$/plate sophoricoside concentrations was not shown significant mutagenic effects in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in Ames test. The 80% cell growth inhibition concentration (IC/SUB 80/) of sophoricoside was determined as above 5,000 $\mu\textrm{g}$/$m\ell$ in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line for the chromosomal aberration and comet assay, respectively. Sophoricoside was not induced chromosomal aberration in CHL fibroblast cell at concentrations of 700, 350 and 175 $\mu\textrm{g}$/$m\ell$ or 600, 300 and 150 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation system, respectively. Also, in the comet assay, the induction of DNA damage was not observed in L5178Y mouse lymphoma cell line both in the absence or presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside were observed in bacterial and mammalian cell systems used in these experiments.

  • PDF

In Vitro Mammalian Chromosomal Aberration Test of Allyl Chloride for Workers' Health (근로자의 건강보호를 위한 알릴 염화물의 포유류 배양세포 염색체이상시험)

  • Rim, Kyung-Taek;Kim, Soo-Jin
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.160-168
    • /
    • 2014
  • Objectives: Chemical hazard evaluations are important for workers' health and working environments. Allyl chloride (CAS No. 107-05-1) is used in many industries, leading to concerns about the possibility of threats to the health of workers. Since only insufficient or controversial information is available about potential related hazards, an in vitro mammalian chromosomal aberration (CA) assay was conducted in order to gain additional information concerning any such hazards. Moreover, toxicological information from this study could be applied for workers' rights to know, and to prepare or update the Materials Safety Data Sheet (MSDS) for a number of industries. Methods and Results: The assay was performed using the Chinese hamster lung fibroblast cell (ATCC, CRL-1935), by the direct method (-S9) and by the metabolic activated method (+S9 mix). Using the direct method, the seven dosages in the 48-hour treatment group did not show that the frequency of CA is proportionate to the dosage. The frequency of CA is not proportionate to the dosage addition for a six-hour treatment using the metabolic activated method. Conclusions: From these findings, it was decided that this chemical does not induce chromosomal aberrations under the tested conditions.

Mutagenicity and Genotoxicity Assessment of Leuconostoc lactis DMLL10 Isolated from Kimchi

  • Heejung Park;Seoyeon Lee;Sojeong Heo;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1803-1809
    • /
    • 2024
  • Leuconostoc lactis DMLL10 is a microorganism specific to kimchi fermentation. In this study, we sought to evaluate the toxicity of this strain, which was newly isolated from kimchi, to determine its safety as a food ingredient. Bacterial reverse mutation assay, chromosomal aberration assay, and mammalian cell in vitro micronucleus assay were performed to assess the genetic toxicity of Leu. lactis DMLL10. The strain did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA1535, TA1537, or Escherichia coli WP2uvrA, with or without metabolic activation of S9 mixture. The oral administration of Leu. lactis DMLL10 also did not significantly increase the number of micronucleated polychromatic erythrocytes, or the mean ratio of polychromatic to total erythrocytes. Additionally, Leu. lactis DMLL10 did not cause a significant chromosomal aberration in CHU/IL cells in the presence or absence of S9 activation. Therefore, Leu. lactis DMLL10 can be suggested as a functional food ingredient with reliability and safety.

Studies on the Effects of Herbal medicines on the Fetus during Pregnancy (II) - Mutagenesis and chromosomal aberration of herbal medicines - (한약이 임신중 태아에 미치는 영향(II) -한약이 돌연변이원성과 염색체이상에 미치는 효과-)

  • Kim, Dong-Hyun;Kim, Nam-Jae;Jang, Jun-Bock;Song, Byoung-Key
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • Oriental herbal medicines were examined for mutagenicity in the reverse mutation test on Salmonella typimurium T A98/100 and chromosomal aberration test on cultured mammalian cells (Chinese hamster cell lines). The reverse mutation test was performed by a plate incorporation method with and without a metabolic activation system (S9 mix). The tested herbal medicines did not significantly increase revertible colonies on any of the test strains with and without a metabolic activation system (S9 mix) at concentrations of 1 mg/ml. In the chromosomal aberration test, most tested herbal medicines did not significantly increase the number of aberrant cells on any of the test strains with a metabolic activation system (S9 mix) at concentrations of 1 mg/ml, compared with the vehicle control. However. Ansu Semen significantly increased the number of aberrant cells without a metabolic activation system (S9 mix). Paeoniae Radix. Hoelen, Aurantii nobilis Pericarpium, Cnidii Rhizoma, Angeliacae gigantis Radix, Perillae Herba and Moutan Cortex Radicis slightly increased revertible colonies on any of the test strains with a metabolic activation system (S9 mix), These results indicate that most herbal medicines might be carefully used in obstetrics and gynecology, although they do not have the potent mutagenic potential under the present test conditions.

  • PDF

Genotoxicity Assessment of Erythritol by Using Short-term Assay

  • Chung, Young-Shin;Lee, Michael
    • Toxicological Research
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Erythritol is a sugar alcohol that is widely used as a natural sugar substitute. Thus, the safety of its usage is very important. In the present study, short-term genotoxicity assays were conducted to evaluate the potential genotoxic effects of erythritol. According to the OECD test guidelines, the maximum test dose was 5,000 ${\mu}g$/plate in bacterial reverse mutation tests, 5,000 ${\mu}g/ml$ in cell-based assays, and 5,000 mg/kg for in vivo testing. An Ames test did not reveal any positive results. No clastogenicity was observed in a chromosomal aberration test with CHL cells or an in vitro micronucleus test with L5178Y $tk^{+/-}$ cells. Erythritol induced a marginal increase of DNA damage at two high doses by 24 hr of exposure in a comet assay using L5178Y $tk^{+/-}$ cells. Additionally, in vivo micronucleus tests clearly demonstrated that oral administration of erythritol did not induce micronuclei formation of the bone marrow cells of male ICR mice. Taken together, our results indicate that erythritol is not mutagenic to bacterial cells and does not cause chromosomal damage in mammalian cells either in vitro or in vivo.

Evaluation of the Genetic Toxicity of Cyclopentane and Ammonium Nitrate - In vitro Mammalian Chromosomal Aberration Assay in Chinese Hamster Ovary Cells

  • Kim, Soo-Jin;Rim, Kyung-Taek;Kim, Jong-Kyu;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.17-25
    • /
    • 2011
  • Objectives: In this study, the in vitro mammalian chromosomal aberration (CA) assay was conducted to gain additional information concerning the hazards associated with the use of cyclopentane and ammonium nitrate. While these two chemicals had already been tested by many methods, they had not been studied in the CA test. Methods: The assay was performed using the ovarian infantile cell (CHO-K1 cell), by the direct method (-S9) and by the metabolic activated method (+S9 mix). Results: Using the direct method, the 7 dosages in a 48 hour treatment group did not show that the frequency of CA is proportion to the dosage addition. The frequency of CA is not proportion to the dosage addition for a 6 hour treatment using the metabolic activated method. Conclusion: From these findings, it was decided that the 2 chemicals do not induce chromosomal aberrations under the tested conditions.

Genotoxicity Study of Dimethyl Isophthalate in Bacterial and Mammalian Cell System

  • Chung, Young-Shin;Choi, Seon-A;Hong, Eun-Kyung;Ryu, Jae-Chun;Lee, Eun-Jung;Choi, Kyung-Hee
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.53-59
    • /
    • 2007
  • This study was conducted to evaluate the mutagenic potential of dimethyl isophthalate (DMIP) using Ames bacterial reverse mutation test, chromosomal aberration test and mouse lymphoma $tk^{+/-}$ gene assay. As results, in Ames bacterial reversion assay, DMIP was tested up to the concentration of 5,000 ${\mu}g$/plate and did not induce mutagenicity in Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537, and Escherichia coli WP2uvrA with or without metabolic activation (S9 mix). Using cytotoxicity test, the maximal doses of DMIP for chromosomal aberration assay were determined at 1,250 ${\mu}g/mL$, which was a minimum precipitation concentration ($IC_{50}>1,940\;{\mu}g/mL$ or 10 mM) and at 155 ${\mu}g/mL$ ($IC_{50}:155\;{\mu}g/mL$) in the presence and the absence, respectively, of S9 mix. DMIP in the presence of S9 mix induced statistically significant (P<0.001) increases in the number of cells with chromosome aberrations at the dose levels of over 250 ${\mu}g/mL$, when compared with the negative control. However, DMIP in the absence of S9 mix did not caused significant induction in chromosomal aberrant cells. In MLA, DMIP at the dose range of 242.5-1,940 ${\mu}g/mL$ in the presence of S9 mix induced statistically significant increases in mutation frequencies related to small colony growth, whereas any significant mutation frequency was not observed in absence of S9 mix. From these results, it is conclusively suggested that dimethyl isophthalate may be a clastogen rather than a point mutagen.