• Title/Summary/Keyword: Mammalian cell

Search Result 740, Processing Time 0.033 seconds

New Insights into mTOR Signal Pathways in Ovarian-Related Diseases: Polycystic Ovary Syndrome and Ovarian Cancer

  • Liu, Ai Ling;Liao, Hong Qing;Li, Zhi Liang;Liu, Jun;Zhou, Cui Lan;Guo, Zi Fen;Xie, Hong Yan;Peng, Cui Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5087-5094
    • /
    • 2016
  • mTOR, the mammalian target of rapamycin, is a conserved serine/threonine kinase which belongs to the phosphatidyl-linositol kinase-related kinase (PIKK) family. It has two complexes called mTORC1 and mTORC2. It is well established that mTOR plays important roles in cell growth, proliferation and differentiation. Over-activation of the mTOR pathway is considered to have a relationship with the development of many types of diseases, including polycystic ovary syndrome (PCOS) and ovarian cancer (OC). mTOR pathway inhibitors, such as rapamycin and its derivatives, can directly or indirectly treat or relieve the symptoms of patients suffering from PCOS or OC. Moreover, mTOR inhibitors in combination with other chemical-molecular agents may have extraordinary efficacy. This paper will discuss links between mTOR signaling and PCOS and OC, and explore the mechanisms of mTOR inhibitors in treating these two diseases, with conclusions regarding the most effective therapeutic approaches.

Possible Application of Animal Reproductive Researches to the Restoration of Endangered and/or Extinct Wild Animals - Review -

  • Fujihara, N.;Xi, Y.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.1026-1034
    • /
    • 2000
  • As described here, most recently developed methods for improving reproduction performance of domesticated animals such as cattle, swine and chicken have been considered to be also usable for restoring some sorts of endangered and/or extinct wild animals in the very near future. Especially, the techniques for in vitro storage of gametes obtained from dead animals shortly after the death, probably 24 h following the sacrifice are also available for obtaining some of experimental specimens. In case of the endangered animals, nobody will be allowed to use any tissues from the living animals, therefore, e.g., the use of skin tissues from these bodies is another possibility of restoring the living animals. Regarding the use of skin tissues, the most highly usable tools must be the cloning techniques for reviving rare cells from the living body. Most possible techniques for cloning cells is nuclear transfer from rare species to highly relative species, and this is the case of germ cells, e.g., primordial germ cells (PGCs) of avian species. One of the possibilities is the nuclear transfer of Crested Ibis (Nipponia nippon) to the PGCs of chicken, resulting in the PGCs with transferred nucleus from the ibis. In mammalian species, the same procedure as in the case of birds would be successful, e.g., the removed nucleus from Giant Pandas will be transferred to the cell, such as somatic cells or germ cells from black bears or lesser pandas, leading to the production of transnucleared cells in the body of female black bears. These two cases are most promising techniques for reviving endangered animals in the world, particularly in Asian countries, mainly in China. As a conclusion, possible production of cloned animals carrying transnucleared cells from endangered animals, such as Giant Pandas and Crested Ibis, may be reproduced gradually in the near future. Scientists are, therefore, required to convert the paradigm from domestic animals to wild animals, including endangered and/or extinct animals on the earth.

Screening of Domain-specific Target Proteins of Polo-like Kinase 1: Construction and Application of Centrosome/Kinetochore-specific Targeting Peptide

  • Ji, Jae-Hoon;Jang, Young-Joo
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.709-716
    • /
    • 2006
  • Mammalian polo-like kinase 1 (Plk1) acts at various stages in early and late mitosis. Plk1 localizes at the centrosome and maintains this position through mitosis. Thereafter Plk1 moves to the kinetochore and midbody region, important sites during chromosome separation and cytokinesis. The catalytic domain of Plk1 is in the N-terminus region, whereas the non-catalytic region in the C-terminus of Plk1 has a conserved motif, named the Polobox. This motif is critical for Plk localization. EGFP proteins fused with the N-terminus and C-terminus of Plk1 localize in the nucleus and centrosomes, respectively. The core sequences of the polo-box (50 amino acids) also localize in Plk1 target organelles. To screen for domain-specific target proteins of Plk1, we constructed an N-terminal domain and a tandem repeat polo-box motif, and used them as templates in a yeast two-hybrid screen. The HeLa cell cDNA library indicated several proteins including the centrosome/kinetochore components or regulators, to be characterized as positive clones. Through in vitro protein binding analyses, we confirmed an interaction between these proteins and Plk1. The data reported from this study indicate that the N- and C- termini of Plk1 may function through recruitment and/or activation of domain-specific target proteins in dividing cells. Additionally, tandem repeats of the conserved core motif of the polo-box are sufficient for targeting and may be useful as a centrosome/kinetochore-specific targeting peptide.

Identification of Differentially Expressed Genes in Bovine Follicular Cystic Ovaries

  • Choe, Chang-Yong;Cho, Young-Woo;Kim, Chang-Woon;Son, Dong-Soo;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.265-272
    • /
    • 2010
  • Follicular cystic ovary (FCO) is one of the most frequently diagnosed ovarian diseases and is a major cause of reproductive failure in mammalian species. However, the mechanism by which FCO is induced remains unclear. Genetic alterations which affect the functioning of many kinds of cells and/or tissues could be present in cystic ovaries. In this study, we performed a comparison analysis of gene expression in order to identify new molecules useful in discrimination of bovine FCO with follicular cystic follicles (FCFs). Normal follicles and FCFs were classified based on their sizes (5 to 10 mm and $\geq25mm$). These follicles had granulosa cell layer and theca interna and the hormone $17{\beta}$-estradiol ($E_2$)/ progesterone ($P_4$) ratio in follicles was greater than one. Perifollicular regions including follicles were used for the preparation of RNA or protein. Differentially expressed genes (DEG) that showed greater than a 2-fold change in expression were screened by the annealing control primer (ACP)-based PCR method using $GeneFishing^{TM}$ DEG kits in bovine normal follicles and FCFs. We identified two DEGs in the FCFs: ribosomal protein L15 (RPL15) and microtubule-associated protein 1B (MAP1B) based on BLAST searches of the NCBI GenBank. Consistent with the ACP analysis, semi-quantitative PCR data and Western blot analyses revealed an up-regulation of RPL15 and a down-regulation of MAP1B in FCFs. These results suggest that RPL15 and MAP1B may be involved in the regulation of pathological processes in bovine FCOs and may help to establish a bovine gene data-base for the discrimination of FCOs from normal ovaries.

The Downregulation of Somatic A-Type $K^+$ Channels Requires the Activation of Synaptic NMDA Receptors in Young Hippocampal Neurons of Rats

  • Kang, Moon-Seok;Yang, Yoon-Sil;Kim, Seon-Hee;Park, Joo-Min;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.135-141
    • /
    • 2014
  • The downregulation of A-type $K^+$ channels ($I_A$ channels) accompanying enhanced somatic excitability can mediate epileptogenic conditions in mammalian central nervous system. As $I_A$ channels are dominantly targeted by dendritic and postsynaptic processings during synaptic plasticity, it is presumable that they may act as cellular linkers between synaptic responses and somatic processings under various excitable conditions. In the present study, we electrophysiologically tested if the downregulation of somatic $I_A$ channels was sensitive to synaptic activities in young hippocampal neurons. In primarily cultured hippocampal neurons (DIV 6~9), the peak of $I_A$ recorded by a whole-cell patch was significantly reduced by high KCl or exogenous glutamate treatment to enhance synaptic activities. However, the pretreatment of MK801 to block synaptic NMDA receptors abolished the glutamate-induced reduction of the $I_A$ peak, indicating the necessity of synaptic activation for the reduction of somatic $I_A$. This was again confirmed by glycine treatment, showing a significant reduction of the somatic $I_A$ peak. Additionally, the gating property of $I_A$ channels was also sensitive to the activation of synaptic NMDA receptors, showing the hyperpolarizing shift in inactivation kinetics. These results suggest that synaptic LTP possibly potentiates somatic excitability via downregulating $I_A$ channels in expression and gating kinetics. The consequential changes of somatic excitability following the activity-dependent modulation of synaptic responses may be a series of processings for neuronal functions to determine outputs in memory mechanisms or pathogenic conditions.

Effect of Addition of Tween 20 and Glycerol in Recombinant Escherichia Coli Culture on Organophosphorus Hydrolase (OPH) Production for Biodrgradation of Coumaphos Insecticide (Coumaphos 살충제의 생분해를 위하여 재조합 대장균 배양에서 Tween 20과 Glycerol 첨가가 유기인분해 효소 생산에 미치는 영향)

  • Choi, Suk Soon;Seo, Sang Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.501-505
    • /
    • 2007
  • Organophosphorus hydrolase (OPH) expressed from recombinant Escherichia coli was used to biodegrade organophosphate insecticide coumaphos which has a very high toxicity in mammalian cells. To improve the productivity of OPH, the effects of nonionic surfactants (Tween 20, PEG 1000) and organic solvents, such as glycerol, propanol, and ethanol, were investigated in the strain culture. The maximum OPH was produced when the 0.25% of Tween 20 and 0.5% of glycerol were added to the medium. As the OPH obtained from disrupt-cell process by ultrasound treatment was used, the biodegradation efficiencies of 0.2, 0.5, 1.0 and 2.0 mM coumaphos were 100, 88, 84 and 78%, respectively. A novel method developed in this study could be applied to the biodetoxification technology in the contaminated region with various coumaphos concentration.

Theoretical Conception of Synergistic Interactions

  • Kim, Jin-Kyu;Vladislav G. Petin
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • An increase in the overall biological effect under the combined action of ionizing radiation with another inactivating agent can be explained in two ways. One is the supposition that synergism may attribute to a reduced cellular capacity of damn-ge repair after the combined action. The other is the hypothesis that synergism may be related to an additional lethal or potentially lethal damage that arises from the interaction of sublesions induced by both agents. These sublesions ave considered to be in-effective when each agent is applied separately. Based on this hypothesis, a simple mathematical model was established. The model can predict the greatest value of the synergistic effect, and the dependence of synergy on the intensity of agents applied, as well. This paper deals with the model validation and the peculiarity of simultaneous action of various factors with radiation on biological systems such as bacteriophage, bacterial spores, yeast and mammalian cells. The common rules of the synergism aye as follows. (1) For any constant rate of exposure, the synergy can be observed only within a certain temperature range. The temperature range which synergistically increases the effects of radiation is shifted to the lower temperature fer thermosensitive objects. Inside this range, there is a specific temperature that maximizes the synergistic effect. (2) A decrease in the exposure rate results in a decrease of this specific temperature to achieve the greatest synergy and vice versa. For a constant temperature at which the irradiation occurs, synergy can be observed within a certain dose rate range. Inside this range an optimal intensity of the physical agent may be indicated, which maximizes the synergy. As the exposure temperature reduces, the optimal intensity decreases and vice versa. (3) The recovery rate after combined action is decelerated due to an increased number of irreversible damages. The probability of recovery is independent of the exposure temperature for yeast cells irradiated with ionizing or UV radiation. Chemical inhibitors of cell recovery act through the formation of irreversible damage but not via damaging the recovery process itself.

In vivo Micronucleus Test of Cyclohexanone and Mutagenicity Classification According to a Globally Harmonized System (Cyclohexanone의 in vivo 소핵시험을 통한 GHS 변이원성 구분)

  • Kim, Soo-Jin;Rim, Kyung-Taek;Lim, Cheol-Hong
    • Journal of Life Science
    • /
    • v.24 no.7
    • /
    • pp.804-811
    • /
    • 2014
  • A micronucleus test of cyclohexanone has not yet been conducted. To classify the chemical hazard posed by cyclohexanone according to a globally harmonized system of classification and labeling of chemicals (GHS), we investigated its mutagenicity by micronucleus induction in ICR bone marrow cells of 7-weeek-old male mice. The mice were administered three dosages of the chemical for 24 hr via the oral route. After 24 hr, the mice were sacrificed, and their bone marrow cells were prepared for smearing slides. Based on counts of micronucleated polychromatic erythrocytes (MNPCEs) of 2,000 polychromatic erythrocytes, cyclohexanone did not inhibit bone marrow cell proliferation in any of the treated groups, but it resulted in micronucleus induction. According to the results of the mammalian bone marrow micronucleus test, this chemical is mutagenic and classified as category 2 in the GHS.

Functional role of Forskolin and PD166285 in the development of denuded mouse oocytes

  • Cao, Hongguo;Bian, Yani;Zhang, Fei;Tang, Yunshu;Li, Caixia;Chen, Jiemei;Zhang, Xiaorong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.344-353
    • /
    • 2018
  • Objective: cAMP and mature promoting factor (MPF) play critical roles during the maturation of mammalian oocytes. The aim of this study was to produce the offspring from denuded oocytes (DOs) in mice by regulating cAMP and MPF. Methods: In this study, we used DOs at the germinal vesicle (GV) stage in mice and regulated levels of cAMP and MPF in DOs by adding Forskolin and PD166285 during in vitro maturation without follicle stimulating hormone and luteinizing hormone, respectively. Results: Combined use of $50{\mu}M$ Forskolin for 3 h and $2.5{\mu}M$ PD166285 for additional 21 h enhanced the developmental competence of DOs, maturation rate of DOs was $76.71%{\pm}4.11%$, blastocyst rate was $18.33%{\pm}4.44%$ after parthenogenetic activation (PA). The DOs could successfully be fertilized with sperm in vitro, cleavage rate was $17.02%{\pm}5.82%$ and blastocyst rate was $5.65%{\pm}3.10%$. Besides, 2-cell in vitro fertilization embryos from DOs produced 4 normal live offspring (4/34). Conclusion: The results confirmed that the combination of Forskolin and PD166285 can induce DOs to complete meiosis process and produce normal offspring.

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF