인터넷의 발달로 많은 편리와 이익을 얻었지만 반대로 지능화되는 악성코드로 인하여 사용자의 경제적, 사회적 피해를 주고 있다. 이를 탐지하고 방어하기 위해 대부분 시그니처 기반의 탐지나 방어 프로그램을 사용하지만 지능화된 악성코드의 변종을 막기에는 매우 어렵다. 따라서 본 논문에서는 쏟아져 나오는 지능화된 악성코드를 탐지하고 방어할 수 있는 모델을 제안한다. 제안 모델은 악성코드의 특성을 이미지화하여 딥러닝을 이용한 학습을 통해 만들어지며 새롭게 탐지된 악성코드와 악성코드 변종들은 이미지화를 수행한 다음 만들어진 모델에 적용하여 탐지한다. 제안된 모델을 사용하면 기존에 탐지되었던 악성코드와 더불어 유사한 변종도 대부분 탐지됨을 알 수 있다.
At present, the existing virus recognition systems usually use signature approach to detect malicious executable files, but these methods often fail to detect new and invisible malware. At the same time, some methods try to use more general features to detect malware, and achieve some success. Moreover, machine learning-based approaches are applied to detect malware, which depend on features extracted from malicious codes. However, the different distribution of features oftraining and testing datasets also impacts the effectiveness of the detection models. And the generation oflabeled datasets need to spend a significant amount time, which degrades the performance of the learning method. In this paper, we use transfer learning to detect new and previously unseen malware. We first extract the features of Portable Executable (PE) files, then combine transfer learning training model with KNN approachto detect the new and unseen malware. We also evaluate the detection performance of a classifier in terms of precision, recall, F1, and so on. The experimental results demonstrate that proposed method with high detection rates andcan be anticipated to carry out as well in the real-world environment.
딥러닝 기반 악성코드 탐지 및 분류모델의 성능은 특성집합을 어떻게 구성하느냐에 따라 크게 좌우된다. 본 논문에서는 CNN 기반의 안드로이드 악성코드 탐지 시 탐지성능을 극대화할 수 있는 최적의 특성집합(feature set)을 선정하는 방법을 제안한다. 특성집합에 포함될 특성은 기계학습 및 딥러닝에서 특성추출을 위해 널리 사용되는 Chi-Square test 알고리즘을 사용하여 선정하였다. CICANDMAL2017 데이터세트를 대상으로 선정된 36개의 특성을 이용하여 CNN 모델을 학습시킨 후 악성코드 탐지성능을 측정한 결과 이진분류에서는 99.99%, 다중분류에서는 98.55%의 Accuracy를 달성하였다.
네트워크의 발전에 따라 악성코드 생성도구가 유포되는 등으로 인해 악성코드의 출현이 기하급수적으로 증가하였으나 기존의 악성코드 탐지 방법을 통한 대응에는 한계가 존재한다. 이러한 상황에 따라 머신러닝 기반의 악성 코드탐지 방법이 발전하는 추세이며, 본 논문에서는 머신러닝 기반의 악성 코드 탐지를 위해 PE 헤더에서 데이터의 feature를 추출한 후 이를 이용하여 autoencoder를 통해 악성코드를 더 잘 나타내는 feature 및 feature importance를 추출하는 방법에 대한 연구를 진행한다. 본 논문은 악성코드 분석에서 범용적으로 사용되는 PE 파일에서 확인 가능한 DLL/API 등의 정보로 구성된 549개의 feature를 추출하였고 머신러닝의 악성코드 탐지 성능향상을 위해 추출된 feature를 이용하여 autoencoder를 통해 데이터를 압축적으로 저장함으로써 데이터의 feature를 효과적으로 추출해 우수한 정확도 제공 및 처리 시간을 2배 단축에 성공적임을 증명하였다. 시험 결과는 악성코드 그룹 분류에도 유용함을 보였으며, 향후 SVM과 같은 분류기를 도입하여 더욱 정확한 악성코드 탐지를 위한 연구를 이어갈 예정이다.
웹 서비스의 증가와 자동화된 공격 도구의 발달로 최근 대부분의 악성코드 유포 경로는 웹 서비스를 통하여 이루어지고 있다. 또한 웹의 기본 언어인 자바스크립트를 이용한 난독화 기법을 통해 악성코드 은닉 사이트의 URL이나 공격 코드를 숨기기 때문에, 기존 패턴 매칭 기반의 네트워크 보안 솔루션으로는 탐지에 한계가 존재하게 된다. 이를 해결하기 위하여 사용자의 웹브라우저에서 악성 자바스크립트를 탐지하기 위한 여러 방안이 제시되었지만, 최근 APT공격과 같이 특정 기업이나 조직 네트워크에 침투하기 위한 고도화된 공격에 대응하기에는 한계가 존재한다. 이런 유형의 공격에 대응하기 위해, 외부에서 유입되는 트래픽에 대해 난독화된 악성코드가 웹을 통해 유입되는지 일괄적인 탐지가 필요하며, 기존 패턴 매칭 기반 솔루션에서 탐지율의 한계를 극복하기 위해 난독화된 자바스크립트를 복호화 하여 숨겨진 악성코드를 탐지할 수 있는 새로운 방법이 필요하다. 본 논문에서는 오픈소스인 Jsunpack-n[1] 을 개량하여 자바스크립트의 함수 오버라이딩 기법과 별도의 자바스크립트 인터프리터를 통해 악성코드에 적용된 난독화 기법에 상관없이 숨겨진 악성코드를 자동적으로 탐지할 수 있는 도구를 제안한다.
오늘날 AI(Artificial Intelligence) 기술은 악성코드 분야를 비롯하여 다양한 분야에서 광범위하게 연구되고 있다. 중요한 의사결정 및 자원을 보호하는 역할에 AI 시스템을 도입하기 위해서는 신뢰할 수 있는 AI 모델이어야 한다. 학습 데이터셋에 의존적인 AI 모델은 새로운 공격에 대해서도 견고한지 확인이 필요하다. 공격자는 악성코드를 새로 생성하기보단, 기존에 탐지되었던 악성코드의 변종을 대량 생산하여 공격에 성공하는 악성코드를 탐색다. AI 모델의 Misclassification을 유도하는 Adversarial attack과 같이 대부분의 공격은 기존 공격에 약간에 변형을 가해 만든 공격들이다. 이러한 변종에도 대응 가능한 Robust한 모델이 필요하며, AI 평가지표로 많이 사용되는 Accuracy, Recall 등으로는 모델의 Robustness 수준을 측정할 수 없다. 본 논문에서는 Adversarial attack 중 하나인 C&W attack을 기반으로 Adversarial sample을 생성하여 Robustness 수준을 측정하고 Adversarial training 을 통해 Robustness 수준을 개선하는 방법을 실험한다. 본 연구의 악성코드 데이터셋 기반 실험을 통해 악성코드 분야에서 해당 제안 방법의 한계 및 가능성을 확인하였다.
신종 악성코드의 등장은 기존 시그니처 기반의 악성코드 탐지 기법들을 무력화시키며 여러 분석 방지 보호 기법들을 활용하여 분석가들의 분석을 어렵게 하고 있다. 시그니처 기반의 기존 연구는 악성코드 제작자가 쉽게 우회할 수 있는 한계점을 지닌다. 따라서 본 연구에서는 악성코드 자체의 특성이 아닌, 악성코드에 적용될 수 있는 패커의 특성을 활용하여, 단시간 내에 악성코드에 적용된 패커의 분석 방지 보호 기법을 탐지하고 분류해낼 수 있는 머신러닝 모델을 구축하고자 한다. 본 연구에서는 패커의 분석 방지 보호 기법을 적용한 악성코드 바이너리를 대상으로 n-gram opcode를 추출하여 TF-IDF를 활용함으로써 피처(feature)를 추출하고 이를 통해 각 분석 방지 보호 기법을 탐지하고 분류해내는 머신러닝 모델 구축 방법을 제안한다. 본 연구에서는 실제 악성코드를 대상으로 악성코드 패킹에 많이 사용되는 상용 패커인 Themida와 VMProtect로 각각 분석 방지 보호 기법을 적용시켜 데이터셋을 구축한 뒤, 6개의 머신러닝 모델로 실험을 진행하였고, Themida에 대해서는 81.25%의 정확도를, VMProtect에 대해서는 95.65%의 정확도를 보여주는 최적의 모델을 구축하였다.
Proxy DLL은 윈도우즈에서 DLL을 사용하는 정상적인 메커니즘이다. 악성코드들은 목표 시스템에 심어진 뒤에 감염을 위해 최소 한번은 실행되어야 하는데, 이를 위해 특정 악성코드들은 정상적인 윈도우즈 라이브러리로 위장하여 Proxy DLL 메커니즘을 이용한다. 이런 유형의 대표적인 공격 사례가 윈티(Winnti) 그룹이 제작한 악성코드들이다. 윈티 그룹은 카스퍼스키랩(Kaspersky Lab)에서 2011년 가을부터 연구하여 밝혀진 중국의 해킹 그룹으로, 온라인 비디오 게임 업계를 목표로 다년간에 걸쳐 음성적으로 활동하였고, 이 과정에서 다수의 악성코드들을 제작하여 온라인 게임사에 감염시켰다. 본 논문에서는 윈도우즈 라이브러리로 위장한 Proxy DLL의 기법을 윈티의 사례를 통해 알아보고, 이를 방어할 수 있는 방법을 연구하여 윈티의 악성코드를 대상으로 검증하였다.
본 논문에서는 악성코드 패밀리 분류를 위한 훈련 데이터의 특징을 제안하고, 앙상블 모델을 이용한 다중 분류 성능을 분석한다. 악성코드 실행 파일로부터 API와 DLL 데이터를 추출하여 훈련 데이터를 구성하며, 의사 결정 트리기반 Random Forest와 XGBoost 알고리즘으로 모델을 학습한다. 악성코드에서 빈번히 사용되는 API와 DLL 정보를 분석하며, 고차원의 훈련 데이터 특징을 저차원의 특징 표현으로 변환시켜, 악성코드 탐지와 패밀리 분류를 위한 API, API-DLL, DLL-CM 특징을 제안한다. 제안된 특징 선택 방법은 데이터 차원 축소와 빠른 학습의 장점을 제공한다. 성능 비교에서 악성코드 탐지율은 Random Forest가 93.0%, 악성코드 패밀리 분류 정확도는 XGBoost가 92.0%, 그리고 정상코드를 포함하는 테스트 오탐률은 Random Forest와 XGBoost가 3.5%이다.
최근 발생하는 다양한 악성 프로그램을 분석해 보면, 해당 악성 프로그램을 쉽게 분석할 수 없도록 하기 위해 다양한 분석 방해 기법들이 적용되고 있다. 그러나, 분석 방해 기법들이 적용될수록, 악성프로그램의 PE파일 헤더에는 정상적인 일반 PE파일의 헤더와는 다른 특징이 더 많이 나타난다. 본 논문에서는 이를 이용하여 악성 프로그램을 탐지할 수 있는 방법을 제안하고자 한다. 이를 위해, PE파일 헤더의 특징을 표현할 수 있는 특징 벡터(Characteristic Vector, CV)를 정의하고, 정상 실행 파일의 특징 벡터의 평균(ACVN)과 악성 실행 파일의 특징 벡터의 평균(ACVM)을 사전 학습을 통해 추출한다. 이후, 임의 파일의 특징 벡터와 ACVN, ACVM간의 Weighted Euclidean Distance(WED)를 계산하고, 이를 기반으로 해당 파일이 정상파일인지 혹은 악성 실행 파일인지를 판단하는 기술을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.