• 제목/요약/키워드: Malware Analysis

검색결과 262건 처리시간 0.022초

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.

정적 분석과 앙상블 기반의 리눅스 악성코드 분류 연구 (Study of Static Analysis and Ensemble-Based Linux Malware Classification)

  • 황준호;이태진
    • 정보보호학회논문지
    • /
    • 제29권6호
    • /
    • pp.1327-1337
    • /
    • 2019
  • IoT 시장의 성장과 더불어 linux 아키텍쳐를 사용하는 디바이스들에 대해 악성코드 보안 위협이 꾸준히 증가하고 있다. 하지만, Mirai 등의 심각한 보안피해를 야기한 주요 악성코드들을 제외하면 linux 악성코드에 대한 보안 커뮤니티의 관련 기술이나 연구는 전무한 수준이다. 또한, IoT 환경의 디바이스, 벤더, 아키텍쳐 등의 다양성이 더욱 심화됨에 따라 linux 악성코드 대응 난이도 또한 심화되고 있다. 따라서, 본 논문에서는 linux 아키텍쳐의 주요 포맷인 ELF를 분석하고 이를 기반으로 한 분석 시스템과, IoT 환경을 고려한 바이너리 기반의 분석 시스템을 제안한다. ELF 기반의 분석 시스템은 상대적으로 고속으로 다수의 악성코드에 대해 전처리 분류 할 수 있으며 상대적으로 저속의 바이너리 기반의 분석 시스템은 전처리 하지 못한 데이터에 대해 모두 분류 가능하다. 이러한 두 개의 프로세스는 서로 상호보완되어 효과적으로 linux 기반의 악성코드를 분류할 수 있을 것이라 기대한다.

동적 악성코드 분석 시스템 효율성 향상을 위한 사전 필터링 요소 연구 (Study of Pre-Filtering Factor for Effectively Improving Dynamic Malware Analysis System)

  • 윤광택;이경호
    • 정보보호학회논문지
    • /
    • 제27권3호
    • /
    • pp.563-577
    • /
    • 2017
  • 인터넷과 컴퓨터의 발달로 인해 신종 변종 악성코드가 하루에 약 1백만 개씩 출현하고 있다. 더욱이 기업을 대상으로 하는 표적공격의 경우 알려지지 않은 악성코드를 통해 공격이 진행되므로 전통적인 시그니처에 의한 탐지 방법은 대응에 대한 효율성이 낮게 되어 많은 기업들은 새로운 샌드박스와 같은 동적 분석 시스템을 도입하였다. 그러나 실행 파일뿐만 아니라 워드문서 또는 PDF 형태의 악성코드도 지속적으로 증가하고 있으며 새로운 악성코드 또한 동적 분석 시스템을 우회하는 기술을 포함하고 있어 효율적인 운영을 위해 많은 자원이 필요하고 새로운 기술이 필요하게 되었다. 본 연구에서는 효율적인 동적 분석 시스템을 위해 사전 필터링 기술을 사용하여 효율성을 향상시키기 위한 사전 필터링 기술 선정 요소를 도출하고 기술 도입 시 합리적인 선택을 할 수 있도록 AHP(Analytics Hierarchy Process)를 사용하여 의사 결정 모델을 제시하고, 도입 시 활용할 수 있도록 공식을 제시하고 검증하였다.

정적 분석 기반 기계학습 기법을 활용한 악성코드 식별 시스템 연구 (A Study on Malware Identification System Using Static Analysis Based Machine Learning Technique)

  • 김수정;하지희;오수현;이태진
    • 정보보호학회논문지
    • /
    • 제29권4호
    • /
    • pp.775-784
    • /
    • 2019
  • 신규 및 변종 악성코드의 발생으로 모바일, IoT, windows, mac 등 여러 환경에서 악성코드 침해 공격이 지속적으로 증가하고 있으며, 시그니처 기반 탐지의 대응만으로는 악성코드 탐지에 한계가 존재한다. 또한, 난독화, 패킹, Anti-VM 기법의 적용으로 분석 성능이 저하되고 있는 실정이다. 이에 유사성 해시 기반의 패턴 탐지 기술과 패킹에 따른 파일 분류 후의 정적 분석 적용으로 기계학습 기반 악성코드 식별이 가능한 시스템을 제안한다. 이는 기존에 알려진 악성코드의 식별에 강한 패턴 기반 탐지와 신규 및 변종 악성코드 탐지에 유리한 기계학습 기반 식별 기술을 모두 활용하여 보다 효율적인 탐지가 가능하다. 본 연구 결과물은 정보보호 R&D 데이터 챌린지 2018 대회의 AI기반 악성코드 탐지 트랙에서 제공하는 정상파일과 악성코드를 대상으로 95.79% 이상의 탐지정확도를 도출하여 분석 성능을 확인하였다. 향후 지속적인 연구를 통해 패킹된 파일의 특성에 맞는 feature vector와 탐지기법을 추가 적용하여 탐지 성능을 높이는 시스템 구축이 가능할 것으로 기대한다.

서열 정렬 기법을 이용한 악성코드 유사도 분석의 성능 개선 (Improvement of Performance of Malware Similarity Analysis by the Sequence Alignment Technique)

  • 조인겸;임을규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권3호
    • /
    • pp.263-268
    • /
    • 2015
  • 변종 악성코드는 그 기능에 있어 차이가 없으나 구조적인 차이가 존재하는 악성코드로, 같은 그룹으로 분류하여 처리하는 것이 유용하다. 변종 악성코드 분석을 위해 본 논문에서는 바이오인포매틱스 분야에서 사용하는 서열 정렬 기법을 사용하여 악성코드들의 API 호출 정보 간의 공통부분을 찾고자 하였다. 서열 정렬 기법은 API 호출 정보의 길이에 대해 의존적인 성능을 가지며, API 호출 정보의 길이가 커짐에 따라 성능이 매우 떨어진다. 따라서 본 논문에서는 서열 정렬 기법 적용 이전에 API 호출 정보에서 발견되는 반복 패턴을 제거하는 방법을 적용함으로써 성능이 보장될 수 있도록 하였다. 최종적으로 서열 정렬 기법을 통한 악성코드 간의 유사도를 구하는 방법에 대하여 논하였다. 또한 실제 악성코드 샘플에 대한 실험 결과를 제시하였다.

Malware Classification using Dynamic Analysis with Deep Learning

  • Asad Amin;Muhammad Nauman Durrani;Nadeem Kafi;Fahad Samad;Abdul Aziz
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.49-62
    • /
    • 2023
  • There has been a rapid increase in the creation and alteration of new malware samples which is a huge financial risk for many organizations. There is a huge demand for improvement in classification and detection mechanisms available today, as some of the old strategies like classification using mac learning algorithms were proved to be useful but cannot perform well in the scalable auto feature extraction scenario. To overcome this there must be a mechanism to automatically analyze malware based on the automatic feature extraction process. For this purpose, the dynamic analysis of real malware executable files has been done to extract useful features like API call sequence and opcode sequence. The use of different hashing techniques has been analyzed to further generate images and convert them into image representable form which will allow us to use more advanced classification approaches to classify huge amounts of images using deep learning approaches. The use of deep learning algorithms like convolutional neural networks enables the classification of malware by converting it into images. These images when fed into the CNN after being converted into the grayscale image will perform comparatively well in case of dynamic changes in malware code as image samples will be changed by few pixels when classified based on a greyscale image. In this work, we used VGG-16 architecture of CNN for experimentation.

MalDC: Malicious Software Detection and Classification using Machine Learning

  • Moon, Jaewoong;Kim, Subin;Park, Jangyong;Lee, Jieun;Kim, Kyungshin;Song, Jaeseung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1466-1488
    • /
    • 2022
  • Recently, the importance and necessity of artificial intelligence (AI), especially machine learning, has been emphasized. In fact, studies are actively underway to solve complex and challenging problems through the use of AI systems, such as intelligent CCTVs, intelligent AI security systems, and AI surgical robots. Information security that involves analysis and response to security vulnerabilities of software is no exception to this and is recognized as one of the fields wherein significant results are expected when AI is applied. This is because the frequency of malware incidents is gradually increasing, and the available security technologies are limited with regard to the use of software security experts or source code analysis tools. We conducted a study on MalDC, a technique that converts malware into images using machine learning, MalDC showed good performance and was able to analyze and classify different types of malware. MalDC applies a preprocessing step to minimize the noise generated in the image conversion process and employs an image augmentation technique to reinforce the insufficient dataset, thus improving the accuracy of the malware classification. To verify the feasibility of our method, we tested the malware classification technique used by MalDC on a dataset provided by Microsoft and malware data collected by the Korea Internet & Security Agency (KISA). Consequently, an accuracy of 97% was achieved.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

변조 업데이트를 통해 전파되는 모바일 악성어플리케이션 모델 연구 (A Research on Mobile Malware Model propagated Update Attacks)

  • 주승환;서희석
    • 디지털산업정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.47-54
    • /
    • 2015
  • The popularity and adoption of smart-phones has greatly stimulated the spread of mobile malware, especially on the popular platforms such as Android. The fluidity of application markets complicate smart-phone security. There is a pressing need to develop effective solutions. Although recent efforts have shed light on particular security issues, there remains little insight into broader security characteristics of smart-phone application. Now, the analytical methods used mainly are the reverse engineering-based analysis and the sandbox-based analysis. Such methods are can be analyzed in detail. but, they take a lot of time and have a one-time payout. In this study, we develop a system to monitor that mobile application permissions at application update. We had to overcome a one-time analysis. This study is a service-based malware analysis, It will be based will be based on the mobile security study.

하이브리드 특징 및 기계학습을 활용한 효율적인 악성코드 분류 시스템 개발 연구 (Development Research of An Efficient Malware Classification System Using Hybrid Features And Machine Learning)

  • 유정빈;오상진;박래현;권태경
    • 정보보호학회논문지
    • /
    • 제28권5호
    • /
    • pp.1161-1167
    • /
    • 2018
  • 기하급수적으로 증가하고 있는 변종 악성코드에 대응하기 위해 악성코드 분류 연구가 다양화되고 있다. 최근 연구에서는 기존 악성코드 분석 기술 (정적/동적)의 개별 사용 한계를 파악하고, 각 방식을 혼합한 하이브리드 분석으로 전환하는 추세이다. 나아가, 분류가 어려운 변종 악성코드를 더욱 정확하게 식별하기 위해 기계학습을 적용하기에 이르렀다. 하지만, 각 방식을 모두 활용했을 때 발생하는 정확성, 확장성 트레이드오프 문제는 여전히 해결되지 못했으며, 학계에서 중요한 연구 주제이다. 이에 따라, 본 연구에서는 기존 악성코드 분류 연구들의 문제점을 보완하기 위해 새로운 악성코드 분류 시스템을 연구 및 개발한다.