• Title/Summary/Keyword: Maltooligosaccharides

Search Result 41, Processing Time 0.024 seconds

A Novel Maltopentaose-Producing Amylase as a Bread Antistaling Agent

  • Auh, Joong-Hyuck;Lee, Su-Yong;Yoo, Seung-Seok;Son, Hyun-Ju;Lee, Jae-Woo;Lee, Sung-Joon;Kim, Young-Bae;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.681-684
    • /
    • 2005
  • A maltopentaose-producing amylase (G5-amylase) from Bacillus megaterium KSM B-404 was applied to retard bread retrogradation. Retrogradation rates were determined by differential scanning calorimetry. Gel permeation chromatography determined changes in maltooligosaccharide composition and the molecular weight profiles of carbohydrate tractions. The baking process produced maltopentaose and maltotriose by the hydrolysis of starch molecules into small units. Amylose and amylopectin degradation as well as maltooligosaccharides produced by the enzyme were likely responsible for retarding starch retrogradation. Overall, addition of G5-amylase reduced the starch retrogradation rate, and was as effective as Novamyl(R), a commercial enzyme.

Sugars in Korean and Japanese Beer - 1. Sugar Contents - (한국 및 일본산 맥주의 당에 관한 연구 - 1. 당함량 -)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.143-149
    • /
    • 1998
  • Sugars in Korean beer(3 brands) and Japanese beer(21 brands) were studied by HPLC and TLC. Total sugar of beer were estimated to 1.71∼3.93%(average 3.15%). Ethanol 4.5% class beers were estimated to 3.24% for Korean brands and 2.5% for Japanese brands. Ethanol 5% and 5.5% class beer were estimated to contain 3.2% for Japanese brands, respectively. Maltooligosaccharide series from glucose to maltodecaose were detected in the test of TLC and HPLC. No fermentable maltooligosaccarides and limit dextrin were estimated to 2.32%. But sugars in Korean Sikhye, rice drink saccharifide by malt, were not detected maltooligosaccharide series form maltotetraose to maltoheptaose.

  • PDF

Cloning and Expression of an Acidophilic $\alpha$-Amylase Gene from Bacillus circulans in Escherichia coli (Bacillus circulans의 호산성 $\alpha$-amylase 유전자의 클로닝 및 발현)

  • 이종석;김지연;김한복;이동석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.112-118
    • /
    • 2000
  • A new gene encoding an acidophilic TEX>$\alpha$-amylase of Bacillus cil-culans KCTC3004 was cloned into Eschericlzia coli using pUC19 as a vector. The gene localized in the 5.8 kb PstI DNA fragment was expressed independently of its orientation in the cloning vector showing enzyme activity about 40 times greater than that produced by the original B, circulans The optimum pH and temperature of the cloned enzyme were pH 3.6 and 45^{\circ}C.$ respectively. The enzyme hydrolyzed starch to produce maltotriose and maltooligosaccharides. The SDS-PAGE and zymopram of the enzyme produced in E coli(p.4L850) indicated a molecular weight of 55,000.

  • PDF

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Production of Maltopentaose and Biochemical Characterization of Maltopentaose-Forming Amylase

  • Kim, Young-Min;Ryu, Hwa-Ja;Lee, Sun-Ok;Seo, Eun-Seong;Lee, So-Young;Yoo, Sun-Kyun;Cho, Dong-Lyun;Kim, Do-Man;Kimura, Atsuo;Chiba, Seiya;Lee, Jin-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.636-643
    • /
    • 2001
  • Bacillus sp. AIR-5, a strain from soil, produced an extracellular maltopentaose-forming amylase from amylose and soluble starch. This bacterium produced 8.9 g/l of maltopentaose from 40 g/l of soluble starch in a batch fermentation and the maltopentaose made up 90 % of the maltooligosaccharides produced (from maltose to maltoheptaose). The culture supernatant was concentrated using a 30 K molecular weight cut-off membrane and purified by DEAE-Cellulose and Sephadex G-150 column chromatographies. The purified protein showed one band on a native-PAGE and its molecular mass was estimated as 250 kDa. The 250-kDa protein was composed of tetramers of a 63-kDa protein. the isoelectric point of the purified protein was pH 6.9, and the optimum temperature for the enzyme activity was $45^{\circ}C$. The enzyme was quickly inactivated above $55^{\circ}C$, and showed a maximum activity at pH 8.5 and over 90% stability between a pH of 6 to 10. The putative N-terminal amino acid sequence of AIR-5 amylase, ATINNGTLMQYFEWYVPNDG, showed a 96% sequence similarity with that of BLA, a general liquefying amylase.

  • PDF

Effects of Calcium Ion Concentration on Starch Hydrolysis of Barley ${\alpha}$-Amylase Isozymes

  • Yuk, Jeong-Bin;Choi, Seung-Ho;Lee, Tae-Hee;Jang, Myoung-Uoon;Park, Jung-Mi;Yi, Ah-Rum;Svensson, Birte;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.730-734
    • /
    • 2008
  • Barley ${\alpha}$-amylase genes, amy1 and amy2, were separately cloned into the expression vector of $pPICZ{\alpha}A$ and recombinant Pichia strains were established by homologous recombination. Both AMYs from Pichia shared almost identical hydrolysis patterns on short maltooligosaccharides to result in glucose, maltose, or maltotriose. Against insoluble blue starch, AMY1 showed the highest activity at 0.1-5 mM calcium concentration, whereas 15-20 mM was optimal for AMY2. On the hydrolysis of soluble starch, unexpectedly, there was no significant difference between AMYs with increase of calcium. However, the relative activity on various starch substrates was significantly different between AMYs, which supports that the isozymes are clearly distinguished from each other on the basis of their unique preferences for substrates.

Cloning and Overexpression of 4-${\alpha}$-Glucanotransferase from Thermus brockianus (TBGT) in E. coli

  • Bang, Bo-Young;Kim, Han-Jo;Kim, Hae-Yeong;Baik, Moo-Yeol;Ahn, Soon-Cheol;Kim, Chung-Ho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1809-1813
    • /
    • 2006
  • A gene corresponding to 4-${\alpha}$-glucanotransferase (${\alpha}GTase$) was cloned from the thermophilic bacterium Thermus brockianus. The nucleotide sequence analysis showed that the ${\alpha}GTase$ gene is composed of 1,503 nucleotides and encodes a polypeptide that is 500 amino acids long with a calculated molecular mass of 57,221 Da. The deduced amino acid sequences of Thermus brockianus ${\alpha}GTase$ (TBGT) exhibited a high level of similarity to the amino acid sequence of ${\alpha}GTase$ of Thermus thermophilus (86%), but low level of homology to that of E. coli (26%). The TBGT gene was overexpressed in E. coli BL21, and the corresponding recombinant enzyme was efficiently purified by Ni-NTA affinity chromatography. The enzymatic characteristics revealed that optimal pH and temperature were pH 6 and $70^{\circ}C$, respectively. Most interestingly, TBGT reacted with small oligosaccharides, especially maltotriose, to form various maltooligosaccharides by using its disproportionation activity.

Enzymatic Production of Amylopectin Cluster Using Cyclodextrin Glucanotransferase (Cyclodextrin Glucanotransferase를 이용한 아밀로펙틴 클러스터의 생산)

  • Lee, Hye-Won;Jeon, Hye-Yeon;Choi, Hyejeong;Shim, Jae-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1388-1393
    • /
    • 2014
  • To enzymatically prepare amylopectin cluster (APC), cyclodextrin glucanotransferase (CGTase I-5) and its mutant enzyme from alkalophilic Bacillus sp. I-5 were employed, after which the hydrolysis patterns of CGTase wild-type and its mutant enzyme toward amylopectin were investigated using multi-angle laser light scattering. CGTase wild-type dramatically reduced the molecular weight of waxy rice starch at the initial reaction, whereas the mutant enzyme degraded waxy rice starch relatively slowly. Based on the results, the molecular weight of one cluster of amylopectin could be about $10^4{\sim}10^5g/mol$. To determine production of cyclic glucans from amylopectin, matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed. CGTase I-5 produced various types of cyclic maltooligosaccharides from amylopectin, whereas the mutant enzyme hardly produced any.

Over-expression of BvMTSH, a fusion gene for maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase, enhances drought tolerance in transgenic rice

  • Joo, Joungsu;Choi, Hae Jong;Lee, Youn Hab;Lee, Sarah;Lee, Choong Hwan;Kim, Chung Ho;Cheong, Jong-Joo;Choi, Yang Do;Song, Sang Ik
    • BMB Reports
    • /
    • v.47 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • Plant abiotic stress tolerance has been modulated by engineering the trehalose synthesis pathway. However, many stress-tolerant plants that have been genetically engineered for the trehalose synthesis pathway also show abnormal development. The metabolic intermediate trehalose 6-phosphate has the potential to cause aberrations in growth. To avoid growth inhibition by trehalose 6-phosphate, we used a gene that encodes a bifunctional in-frame fusion (BvMTSH) of maltooligosyltrehalose synthase (BvMTS) and maltooligosyltrehalose trehalohydrolase (BvMTH) from the nonpathogenic bacterium Brevibacterium helvolum. BvMTS converts maltooligosaccharides into maltooligosyltrehalose and BvMTH releases trehalose. Transgenic rice plants that over-express BvMTSH under the control of the constitutive rice cytochrome c promoter (101MTSH) or the ABA-inducible Ai promoter (105MTSH) show enhanced drought tolerance without growth inhibition. Moreover, 101MTSH and 105MTSH showed an ABA-hyposensitive phenotype in the roots. Our results suggest that over-expression of BvMTSH enhances drought-stress tolerance without any abnormal growth and showes ABA hyposensitive phenotype in the roots.

New Action Pattern of a Maltose-forming α-Amylase from Streptomyces sp. and its Possible Application in Bakery

  • Ammar, Youssef Ben;Matsubara, Takayoshi;Ito, Kazuo;Iizuka, Masaru;Limpaseni, Tipaporn;Pongsawasdi, Piamsook;Minamiura, Noshi
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.568-575
    • /
    • 2002
  • An $\alpha$-amylase (EC 3.2.1.1) was purified that catalyses the production of a high level of maltose from starch without the attendant production of glucose. The enzyme was produced extracellularly by thermophilic Streptomyces sp. that was isolated from Thailand's soil. Purification was achieved by alcohol precipiation, DEAE-Cellulose, and Gel filtration chromatographies. The purified enzyme exhibited maximum activity at pH 6-7 and $60^{\circ}C$. It had a relative molecular mass of 45 kDa, as determined by SDS-PAGE. The hydrolysis products from starch had $\alpha$-anomeric forms, as determined by $^1H$-NMR. This maltose-forming $\alpha$-amylase completely hydrolyzed the soluble starch to produce a high level of maltose, representing up to 90%. It hydrolyzed maltotetrose and maltotriose to primarily produce maltose (82% and 62%, repectively) without the attendant production of glucose. The high maltose level as a final end-product from starch and maltooligosaccharides, and the unique action pattern of this enzyme, indicate an unusual maltose-forming system. After the addition of the enzyme in the bread-baking process, the bread's volume increased and kept its softness longer than when the bread had no enzyme.