• 제목/요약/키워드: Malicious Supply Chains

검색결과 1건 처리시간 0.014초

관세 정형 빅데이터를 활용한 우범공급망 거래패턴 선별 (Transaction Pattern Discrimination of Malicious Supply Chain using Tariff-Structured Big Data)

  • 김성찬;송사광;조민희;신수현
    • 한국콘텐츠학회논문지
    • /
    • 제21권2호
    • /
    • pp.121-129
    • /
    • 2021
  • 본 연구에서는 데이터마이닝(Data Mining) 기법 중 하나인 연관관계분석(Association Rule Mining)을 적용하여 위험화물 선별모델을 구축함으로써 관세위험을 최소화하고자 한다. 이를 위해 관세청 수입신고서 빅데이터를 활용하여 연관관계분석 알고리즘인 어프라이어리 알고리즘(Apriori Algorithm)을 적용하고 공급망 간의 위험정도를 계산한다. 대규모의 수입신고 데이터로부터 해외공급자와 수입업체 간의 세율관련(과세가격, 품목, 중수량 등), 원산지표시 위반 등에 관련한 적발결과 관한 규칙셋(Rule Set)과 이 규칙들의 신뢰도(Confidence)을 확보하여 우범공급망 간의 거래패턴을 예측할 수 있는 선별모델을 구축한다. 총 2년 6개월 치의 수입신고 데이터를 활용하여 5-겹 교차검증(5-fold cross validation)을 수행한 결과 16.6%의 Precision과 33.8%의 Recall을 보였다. 이는 빈도기반 방법보다 Precision 기준 약 3.4배 Recall 기준 약 1.5배 높은 결과이다. 이로써 논문에서 제안하고 있는 방법이 관세위험을 줄일 수 있는 효과적인 방법임을 확인하였다.