• Title/Summary/Keyword: Malicious Application

Search Result 192, Processing Time 0.028 seconds

Design and Implementation of Web-browser based Malicious behavior Detection System(WMDS) (웹 브라우저 기반 악성행위 탐지 시스템(WMDS) 설계 및 구현)

  • Lee, Young-Wook;Jung, Dong-Jae;Jeon, Sang-Hun;Lim, Chae-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.667-677
    • /
    • 2012
  • Vulnerable web applications have been the primary method used by the attackers to spread their malware to a large number of victims. Such attacks commonly make use of malicious links to remotely execute a rather advanced malicious code. The attackers often deploy malwares that utilizes unknown vulnerabilities so-called "zero-day vulnerabilities." The existing computer vaccines are mostly signature-based and thus are effective only against known attack patterns, but not capable of detecting zero-days attacks. To mitigate such limitations of the current solutions, there have been a numerous works that takes a behavior-based approach to improve detection against unknown malwares. However, behavior-based solutions arbitrarily introduced a several limitations that made them unsuitable for real-life situations. This paper proposes an advanced web browser based malicious behavior detection system that solves the problems and limitations of the previous approaches.

A High-Interaction Client Honeypot on Android Platform (안드로이드 플랫폼에서의 High-Interaction 클라이언트 허니팟 적용방안 연구)

  • Jung, Hyun-Mi;Son, Seung-Wan;Kim, Kwang-Seok;Lee, Gang-Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.381-386
    • /
    • 2013
  • As the new variation malicious codes of android platform are drastically increasing, the preparation plan and response is needed. We proposed a high-interaction client honeypot that applied to the android platform. We designed flow for the system. Application plan and the function was analyze. Each detail module was optimized in the Android platform. The system is equipped with the advantage of the high-interaction client honeypot of PC environment. Because the management and storage server was separated it is more flexible and expanded.

Androfilter: Android Malware Filter using Valid Market Data (Androfilter: 유효마켓데이터를 이용한 안드로이드 악성코드 필터)

  • Yang, Wonwoo;Kim, Jihye
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1341-1351
    • /
    • 2015
  • As the popularization of smartphone increases the number of various applications, the number of malicious applications also grows rapidly through the third party App Market or black market. This paper suggests an investigation filter, Androfilter, that detects the fabrication of APK file effectively. Whereas the most of antivirus software uses a separate server to collect, analyze, and update malicious applications, Androfilter assumes Google Play as the trusted party and verifies integrity of an application through a simple query to Google Play. Experiment results show that Androfilter blocks brand new malicious applications that have not been reported yet as well as known malicious applications.

Detection of Malicious Node using Timestamp in USN Adapted Diffie-Hellman Algorithm (Diffie-Hellman 알고리즘이 적용된 USN에서 타임스탬프를 이용한 악의적인 노드 검출)

  • Han, Seung-Jin;Choi, Jun-Hyeog
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.115-122
    • /
    • 2009
  • In this paper, we proposed scheme that we use a difference of timestamp in time in Ubiquitous environments as we use the Diffie-Hellman method that OTP was applied to when it deliver a key between nodes, and can detect a malicious node at these papers. Existing methods attempted the malicious node detection in the ways that used correct synchronization or directed antenna in time. We propose an intermediate malicious node detection way at these papers without an directed antenna addition or the Trusted Third Party (TTP) as we apply the OTP which used timestamp to a Diffie-Hellman method, and we verify safety regarding this. A way to propose at these papers is easily the way how application is possible in Ubiquitous environment.

Mobile Malicious code Trends and Consideration (모바일 악성 코드 현황 및 대책)

  • Choi, A-bin;Ryu, Su-mi;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.671-674
    • /
    • 2013
  • Recently, as application that support a various functions is developing, through the smart phones penetration rate and applications market is increasing quickly, the user has been growing rapidly. An important data is stored in the smart phone because smart phone is closely connected to real life. Due to the malicious code caused by abuse with diversity purpose, the safety of the smart phone is being threatened.Accordingly in this paper, we will grasp about malicious code such as incidence, cause and attack type. Through this, it will be considered that problems is caused by malicious code each mobile OS spreaded lately.

  • PDF

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

A Code Concealment Method using Java Reflection and Dynamic Loading in Android (안드로이드 환경에서 자바 리플렉션과 동적 로딩을 이용한 코드 은닉법)

  • Kim, Jiyun;Go, Namhyeon;Park, Yongsu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • Unlike existing widely used bytecode-centric Android application code obfuscation methodology, our scheme in this paper makes encrypted file i.e. DEX file self-extracted arbitrary Android application. And then suggests a method regarding making the loader app to execute encrypted file's code after saving the file in arbitrary folder. Encrypted DEX file in the loader app includes original code and some of Manifest information to conceal event treatment information. Loader app's Manifest has original app's Manifest information except included information at encrypted DEX. Using our scheme, an attacker can make malicious code including obfuscated code to avoid anti-virus software at first. Secondly, Software developer can make an application with hidden main algorithm to protect copyright using suggestion technology. We implement prototype in Android 4.4.2(Kitkat) and check obfuscation capacity of malicious code at VirusTotal to show effectiveness.

WebSHArk 1.0: A Benchmark Collection for Malicious Web Shell Detection

  • Kim, Jinsuk;Yoo, Dong-Hoon;Jang, Heejin;Jeong, Kimoon
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2015
  • Web shells are programs that are written for a specific purpose in Web scripting languages, such as PHP, ASP, ASP.NET, JSP, PERL-CGI, etc. Web shells provide a means to communicate with the server's operating system via the interpreter of the web scripting languages. Hence, web shells can execute OS specific commands over HTTP. Usually, web attacks by malicious users are made by uploading one of these web shells to compromise the target web servers. Though there have been several approaches to detect such malicious web shells, no standard dataset has been built to compare various web shell detection techniques. In this paper, we present a collection of web shell files, WebSHArk 1.0, as a standard dataset for current and future studies in malicious web shell detection. To provide baseline results for future studies and for the improvement of current tools, we also present some benchmark results by scanning the WebSHArk dataset directory with three web shell scanning tools that are publicly available on the Internet. The WebSHArk 1.0 dataset is only available upon request via email to one of the authors, due to security and legal issues.

Malware Application Classification based on Feature Extraction and Machine Learning for Malicious Behavior Analysis in Android Platform (안드로이드 플랫폼에서 악성 행위 분석을 통한 특징 추출과 머신러닝 기반 악성 어플리케이션 분류)

  • Kim, Dong-Wook;Na, Kyung-Gi;Han, Myung-Mook;Kim, Mijoo;Go, Woong;Park, Jun Hyung
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • This paper is a study to classify malicious applications in Android environment. And studying the threat and behavioral analysis of malicious Android applications. In addition, malicious apps classified by machine learning were performed as experiments. Android behavior analysis can use dynamic analysis tools. Through this tool, API Calls, Runtime Log, System Resource, and Network information for the application can be extracted. We redefined the properties extracted for machine learning and evaluated the results of machine learning classification by verifying between the overall features and the main features. The results show that key features have been improved by 1~4% over the full feature set. Especially, SVM classifier improved by 10%. From these results, we found that the application of the key features as a key feature was more effective in the performance of the classification algorithm than in the use of the overall features. It was also identified as important to select meaningful features from the data sets.

Research on Registry Analysis based Malware Detection Method (Registry 분석을 통한 악성코드 감염여부 탐지 방법 연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.37-43
    • /
    • 2017
  • A registry is a hierarchy database which is designed to store information necessary for operating system and application programs in Windows operating system, and it is involved in all activities such as booting, logging, service execution, application execution, and user behavior. Digital forensic is widely used. In recent years, malicious codes have penetrated into systems in a way that is not recognized by the user, and valuable information is leaked or stolen, causing financial damages. Therefore, this study proposes a method to detect malicious code by using a shareware application without using expensive digital forensic program, so as to analysis hacking methods and prevent hacking damage in advance.