최근의 악성코드는 백신에 쉽게 탐지 되지 않기 위해 바이러스를 압축파일로 변조시켜 악성코드 패턴을 지연하는 추세이다. 시중에 나와 있는 수많은 백신엔진 중에서는 압축파일로 변조된 악성코드 패턴 및 검사가 가능한지 알아 봐야한다. 본 논문은 다중 압축 파일로 위장 변조된 은닉된 악성코드의 패턴을 검사하여 검출되는지를 검사 엔진을 통해 모의실험을 한다. 은닉된 악성코드의 행위를 분석하며, 호스트 파일 변조와 시스템 드라이버 파일 감염 및 레지스트리 등록이 되는가를 분석한다. 본 연구를 통해 은닉형 악성코드의 검사와 백신 치료 효과를 강화시켜 악성코드로 인한 피해를 감소하는데 기여할 것이다.
MANET은 유선 기반망이 구축되어 있지 않은 곳에서 운용되기 때문에 노출된 매체와 동적인 토폴로지, 중앙의 감시와 관리 결여 등으로 보안 측면에서 취약하다. 특히, 중앙에서 네트워크를 제어해 주는 중재자가 없기 때문에 악의적인 노드가 발생해도 그에 대한 탐지나 조치가 어렵다. 이와 같은 악의적인 노드는 Ad-hoc 관련 보안 연구 분야중 라우팅에 밀접하게 연관되어 있다. 따라서, 본 논문에서는 안전하고 효율적인 라우팅을 위해 악의적으로 행동하는 노드를 효과적으로 탐지하여 보안성을 더욱 높일 수 있는 기법을 제안한다. 이를 위해 일정기간 악의적인 행위를 수행하는 노드를 개개의 노드 및 이웃간의 협업을 통해 이중화하여 탐지하고, 각 노드에 대한 신뢰지수를 부여하여 관리함으로써 악의적인 노드 행위에 효과적으로 대응 할 수 있는 기법인 MBC(Identification technition of Malicious Behavior node based on Collaboration in MANET)을 제안한다. 제안한 방법의 효율성을 검증하기 위해 우리는 네트워크 시뮬레이션을 수행하였다. 이 시뮬레이션 수행결과는 제안한 방법이 기존 방법보다 악의적인 노드를 더 정확하고 신속하게 식별 가능함으로써 보다 효율적인 라우팅이 이루어짐을 보였다.
많은 소셜 서비스 상에서 악성 댓글로 인한 문제가 발생되고 있으며, 특히 매체로서의 성격이 강한 유튜브는 모바일기기를 이용한 쉬운 접근성으로 인해 악성 댓글로 인한 폐해가 더욱 커지고 있는 실정이다. 본 논문에서는 LSTM 기반의 자연어 처리를 통해 유튜브 콘텐츠에 대한 악성 댓글을 판별하고 악성 댓글의 비율, 악플러들의 닉네임, 그리고 빈도를 시각적으로 표현해 주기 위한 유튜브 악성 댓글 탐지 시스템을 설계하고 구현하였으며, 성능을 평가하였다. 약 5만 개의 댓글 데이터셋을 통해 악성 댓글 여부를 판별하였을 때, 약 92%의 정확도로 악성 댓글을 검출해 낼 수 있었으며, 이를 활용하여 악성 댓글의 통계가 자동으로 생성되도록 함으로써 많은 유튜버들이 겪는 악성 댓글로 인한 사회적 문제를 해결할 수 있을 것으로 기대한다.
악성댓글이 사회적 문제로 떠오르면서 이에 대한 해결책이 요구되고 있다. 이에 많은 연구들은 악성댓글을 이해하고 예방하기 위해 여러 관점에서 연구를 진행해왔다. 그 중 기존 연구에서 악성댓글에 대한 중화는 악성댓글을 설명하는 중요한 요인으로 나타났지만 아직까지 성별에 따른 중화 정도의 차이는 크게 고려되고 있지 않고 있다. 또한, 온라인은 현실과는 다른 환경적 특성들이 다수 존재함에도 악성댓글과의 연구는 미흡한 상황이다. 이러한 사실들을 기반으로 본 연구는 악성댓글과 중화의 관계에 성별의 조절효과를 살펴보았으며, 악성댓글에 온라인의 환경적 요인들(익명성, 사회적 실재감 부족)의 영향력을 실증하였다. 연구 결과, 온라인 환경적 요인들의 영향력을 발견되지 않은 반면, 악성댓글에 대한 중화는 강한 직접적 영향력과 성별 차이의 조절효과가 존재한다는 사실을 발견하였다. 본 연구의 결과를 기반으로 학문적 실무적 시사점을 논의하고 연구 한계점 및 향후 연구 방향을 제언한다.
안드로이드 기반 오픈 마켓의 개방성으로 인해 일반적인 정상 어플리케이션 뿐만아니라 공격자에 의해 개발된 악성 어플리케이션의 배포 역시 점차 증가하고 있는 추세이다. 악성 어플리케이션들의 확산으로 인한 피해를 줄이기 위해서는 상용 모바일 단말을 대상으로 보다 정확한 방법으로 정상 앱과 악성 앱을 판별할 수 있는 메커니즘이 개발되어야 한다. 이에 본 논문에서는 안드로이드 플랫폼 기반 모바일 단말을 대상으로 정상 앱과 악성 앱으로 부터 이벤트 패턴을 분석하기 위해 안드로이드 오픈 마켓에서 가장 사용자 이용도가 높은 게임 앱을 대상으로 정상 이벤트 패턴을 분석하였고, Android MalGenome Project에서 배포하고 있는 1,260개의 악성 샘플들 중에서 게임 앱 형태에 해당하는 악성 앱과 유사 악성 앱 등을 대상으로 악성 이벤트 패턴을 분석하였다. 이와 같이 안드로이드 기반 모바일 단말에서 정상 앱과 악성 앱을 대상으로 리눅스 기반 시스템 콜 추출 도구인 Strace를 이용해 정상 앱과 악성 앱의 이벤트를 추출하는 실험을 수행하였다. 정상 앱 및 악성 앱이 각각 실행되었을 때 발생하는 이벤트를 수집하여 각각의 이벤트 집합에 대한 연관성 분석 과정을 수행하였다. 이러한 과정을 통해 정상 앱과 악성 앱 각각에 대한 이벤트 발생 특징 및 패턴과 분포도를 분석하여 이벤트 유사도를 추출할 수 있었으며 최종적으로는 임의의 앱에 대한 악성 여부를 판별하는 메커니즘을 제시하였다.
If additional condition in letter of credit is used in malicious way, it affects the international trade transaction in jeopardy. Therefore, it's significant to identify whether additional conditions are malicious or ordinary in the transaction with letter of credit. In normal cases, thanks to lots of useful features as an international payment method, such as security of payment, legal protection, and versatility, a letter of credit is widely used in international trade. However, even with these advantageous features, a letter of credit is complicate and costly to use, compared to other payment methods. Furthermore, due to its principle of independence from underlying contract, a use of letter of credit creates another type of concern for proper handling and needs significant caution upon field use. At some points, malicious additional conditions are used for buyer's advantage in deal making and fraud instance in worst situation. In addition, some countries request malicious conditions against sellers as a non-tariff barrier. Therefore it's extremely important to recognize whether malicious additional condition exists in letter of credit and, if so, how to deal with it. This study delivers the information to distinguish and categorize the malicious conditions in various cases and to figure out how to deal with them for safer trade with less risk.
모바일 악성코드는 웜에 의한 전파가 대표적이며, 웜의 확산 특징을 분석하기 위한 모델링 기법들이 제시되었지만 거시적인 분석만 가능하였고 특정 바이러스, 악성코드에 대해 예측하기는 한계점이 있다. 따라서 본 논문에서는 과거의 악성코드 데이터를 활용하여 미래의 악성코드의 발생을 예측 할 수 있는 마코프 체인을 기반으로 한 예측 방법을 제시하였다. 마코프 체인 예측 모델링에 적용할 악성코드 평균값은 전체 평균값, 최근 1년 평균값, 최근 평균값(6개월)의 세 가지 범위로 분류하여 적용하였고, 적용하여 얻어진 예측 값을 비교하여 최근 평균 값(6개월)을 적용하는 것이 악성코드 예측 확률을 높일 수 있음을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권2호
/
pp.766-783
/
2012
Recently, many malicious users have attacked web browsers using JavaScript code that can execute dynamic actions within the browsers. By forcing the browser to execute malicious JavaScript code, the attackers can steal personal information stored in the system, allow malware program downloads in the client's system, and so on. In order to reduce damage, malicious web pages must be located prior to general users accessing the infected pages. In this paper, a novel framework (JsSandbox) that can monitor and analyze the behavior of malicious JavaScript code using internal function hooking (IFH) is proposed. IFH is defined as the hooking of all functions in the modules using the debug information and extracting the parameter values. The use of IFH enables the monitoring of functions that API hooking cannot. JsSandbox was implemented based on a debugger engine, and some features were applied to detect and analyze malicious JavaScript code: detection of obfuscation, deobfuscation of the obfuscated string, detection of URLs related to redirection, and detection of exploit codes. Then, the proposed framework was analyzed for specific features, and the results demonstrate that JsSandbox can be applied to the analysis of the behavior of malicious web pages.
최근 발생하는 인터넷 상의 악성 행위는 많은 부분 악성 봇넷과 관련이 있다. DDoS 공격이나 스팸 발송, 악성코드 전파, 개인 정보 유출, 피싱 등 대부분의 악성 행위들이 봇넷에 의해 행해지고 있다. 이러한 봇넷을 탐지하고자 네트워크 단에서 악성 봇넷 탐지 시스템이 활발히 연구되고 있지만 특정한 프로토콜이나 행위, 공격을 수행하는 봇넷에만 적용 가능하다는 단점을 가지고 있다. 이에 본 논문에서는 악성 봇넷을 탐지하기 위한 척도 선정에 관한 연구를 진행하였다. 연구를 위해 악성 봇넷의 트래픽을 수집 및 분석하여 분석된 네트워크 트래픽의 특징에 기반 한 척도를 선정하였다. 본 연구를 통해 악성 봇넷을 탐지하는데 도움이 될 수 있을 것으로 기대한다.
시간이 지날수록 새로운 맬웨어는 계속 증가하고, 점점 고도화되고 있다. 악성 코드를 진단하기 위해 실행파일에 관한 연구는 다양하게 진행되고 있으나, 비실행 문서파일과 악성 URL, 문서 내 악성 매크로 및 JS 등을 악용하여 이메일에 악성 코드 위협을 내재화한 공격은 탐지하기 어려운 것이 현실이다. 본 논문에서는 악성 이메일 공격의 사전 탐지 및 차단을 통한 이메일 보안을 위해 악성 코드를 분석하는 방법을 소개하고, AI 기반으로 비실행 문서파일의 악성 여부를 판단하는 방법을 제시한다. 다양한 알고리즘 중에 효율적인 학습 모델링 방법을 채택하고 Kubeflow를 활용하여 악성 코드를 진단하는 ML 워크플로 시스템을 제안하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.