• Title/Summary/Keyword: Malicious

Search Result 1,428, Processing Time 0.026 seconds

Flow based Sequential Grouping System for Malicious Traffic Detection

  • Park, Jee-Tae;Baek, Ui-Jun;Lee, Min-Seong;Goo, Young-Hoon;Lee, Sung-Ho;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3771-3792
    • /
    • 2021
  • With the rapid development of science and technology, several high-performance networks have emerged with various new applications. Consequently, financially or socially motivated attacks on specific networks have also steadily become more complicated and sophisticated. To reduce the damage caused by such attacks, administration of network traffic flow in real-time and precise analysis of past attack traffic have become imperative. Although various traffic analysis methods have been studied recently, they continue to suffer from performance limitations and are generally too complicated to apply in existing systems. To address this problem, we propose a method to calculate the correlation between the malicious and normal flows and classify attack traffics based on the corresponding correlation values. In order to evaluate the performance of the proposed method, we conducted several experiments using examples of real malicious traffic and normal traffic. The evaluation was performed with respect to three metrics: recall, precision, and f-measure. The experimental results verified high performance of the proposed method with respect to first two metrics.

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Multi-Watermarking for Image Authentication Based on DWT Coefficients (이미지 인증을 위한 DWT 계수기반 다중 워터마킹)

  • Lee Hye-Ran;Rhee Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2005
  • In this paper, we propose a multi-watermarking algorithm to satisfy two purposes: fragility against malicious attacks and robustness against non-malicious attacks. The algorithm can be used for image authentication using coefficients of Discrete Wavelet Transform(DWT). In the proposed method, watermarks are generated by combining binary image with some features extracted from the subband LL3, and then they are embedded into both the spatial and frequency domain. That is, on the spatial domain they are embedded into the Least Significant Bit(LSB) of all pixels of image blocks, and on the frequency domain the coefficients of the subband LH2 and HL2 are adjusted according to the watermarks. Thus the algorithm not only resists malicious attack but also permits non-malicious attacks such as blurring, sharpening, and JPEG compression.

Semi-supervised based Unknown Attack Detection in EDR Environment

  • Hwang, Chanwoong;Kim, Doyeon;Lee, Taejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4909-4926
    • /
    • 2020
  • Cyberattacks penetrate the server and perform various malicious acts such as stealing confidential information, destroying systems, and exposing personal information. To achieve this, attackers perform various malicious actions by infecting endpoints and accessing the internal network. However, the current countermeasures are only anti-viruses that operate in a signature or pattern manner, allowing initial unknown attacks. Endpoint Detection and Response (EDR) technology is focused on providing visibility, and strong countermeasures are lacking. If you fail to respond to the initial attack, it is difficult to respond additionally because malicious behavior like Advanced Persistent Threat (APT) attack does not occur immediately, but occurs over a long period of time. In this paper, we propose a technique that detects an unknown attack using an event log without prior knowledge, although the initial response failed with anti-virus. The proposed technology uses a combination of AutoEncoder and 1D CNN (1-Dimention Convolutional Neural Network) based on semi-supervised learning. The experiment trained a dataset collected over a month in a real-world commercial endpoint environment, and tested the data collected over the next month. As a result of the experiment, 37 unknown attacks were detected in the event log collected for one month in the actual commercial endpoint environment, and 26 of them were verified as malicious through VirusTotal (VT). In the future, it is expected that the proposed model will be applied to EDR technology to form a secure endpoint environment and reduce time and labor costs to effectively detect unknown attacks.

An Efficient PSI-CA Protocol Under the Malicious Model

  • Jingjie Liu;Suzhen Cao;Caifen Wang;Chenxu Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.720-737
    • /
    • 2024
  • Private set intersection cardinality (PSI-CA) is a typical problem in the field of secure multi-party computation, which enables two parties calculate the cardinality of intersection securely without revealing any information about their sets. And it is suitable for private data protection scenarios where only the cardinality of the set intersection needs to be calculated. However, most of the currently available PSI-CA protocols only meet the security under the semi-honest model and can't resist the malicious behaviors of participants. To solve the problems above, by the application of the variant of Elgamal cryptography and Bloom filter, we propose an efficient PSI-CA protocol with high security. We also present two new operations on Bloom filter called IBF and BIBF, which could further enhance the safety of private data. Using zero-knowledge proof to ensure the safety under malicious adversary model. Moreover, in order to minimize the error in the results caused by the false positive problem, we use Garbled Bloom Filter and key-value pair packing creatively and present an improved PSI-CA protocol. Through experimental comparison with several existing representative protocols, our protocol runs with linear time complexity and more excellent characters, which is more suitable for practical application scenarios.

Development of a Secure Routing Protocol using Game Theory Model in Mobile Ad Hoc Networks

  • Paramasivan, Balasubramanian;Viju Prakash, Maria Johan;Kaliappan, Madasamy
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In mobile ad-hoc networks (MANETs), nodes are mobile in nature. Collaboration between mobile nodes is more significant in MANETs, which have as their greatest challenges vulnerabilities to various security attacks and an inability to operate securely while preserving its resources and performing secure routing among nodes. Therefore, it is essential to develop an effective secure routing protocol to protect the nodes from anonymous behaviors. Currently, game theory is a tool that analyzes, formulates and solves selfishness issues. It is seldom applied to detect malicious behavior in networks. It deals, instead, with the strategic and rational behavior of each node. In our study,we used the dynamic Bayesian signaling game to analyze the strategy profile for regular and malicious nodes. This game also revealed the best actions of individual strategies for each node. Perfect Bayesian equilibrium (PBE) provides a prominent solution for signaling games to solve incomplete information by combining strategies and payoff of players that constitute equilibrium. Using PBE strategies of nodes are private information of regular and malicious nodes. Regular nodes should be cooperative during routing and update their payoff, while malicious nodes take sophisticated risks by evaluating their risk of being identified to decide when to decline. This approach minimizes the utility of malicious nodes and it motivates better cooperation between nodes by using the reputation system. Regular nodes monitor continuously to evaluate their neighbors using belief updating systems of the Bayes rule.

WebSHArk 1.0: A Benchmark Collection for Malicious Web Shell Detection

  • Kim, Jinsuk;Yoo, Dong-Hoon;Jang, Heejin;Jeong, Kimoon
    • Journal of Information Processing Systems
    • /
    • v.11 no.2
    • /
    • pp.229-238
    • /
    • 2015
  • Web shells are programs that are written for a specific purpose in Web scripting languages, such as PHP, ASP, ASP.NET, JSP, PERL-CGI, etc. Web shells provide a means to communicate with the server's operating system via the interpreter of the web scripting languages. Hence, web shells can execute OS specific commands over HTTP. Usually, web attacks by malicious users are made by uploading one of these web shells to compromise the target web servers. Though there have been several approaches to detect such malicious web shells, no standard dataset has been built to compare various web shell detection techniques. In this paper, we present a collection of web shell files, WebSHArk 1.0, as a standard dataset for current and future studies in malicious web shell detection. To provide baseline results for future studies and for the improvement of current tools, we also present some benchmark results by scanning the WebSHArk dataset directory with three web shell scanning tools that are publicly available on the Internet. The WebSHArk 1.0 dataset is only available upon request via email to one of the authors, due to security and legal issues.

Stacked Autoencoder Based Malware Feature Refinement Technology Research (Stacked Autoencoder 기반 악성코드 Feature 정제 기술 연구)

  • Kim, Hong-bi;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.593-603
    • /
    • 2020
  • The advent of malicious code has increased exponentially due to the spread of malicious code generation tools in accordance with the development of the network, but there is a limit to the response through existing malicious code detection methods. According to this situation, a machine learning-based malicious code detection method is evolving, and in this paper, the feature of data is extracted from the PE header for machine-learning-based malicious code detection, and then it is used to automate the malware through autoencoder. Research on how to extract the indicated features and feature importance. In this paper, 549 features composed of information such as DLL/API that can be identified from PE files that are commonly used in malware analysis are extracted, and autoencoder is used through the extracted features to improve the performance of malware detection in machine learning. It was proved to be successful in providing excellent accuracy and reducing the processing time by 2 times by effectively extracting the features of the data by compressively storing the data. The test results have been shown to be useful for classifying malware groups, and in the future, a classifier such as SVM will be introduced to continue research for more accurate malware detection.

Identification of Attack Group using Malware and Packer Detection (악성코드 및 패커 탐지를 이용한 공격 그룹 판별)

  • Moon, Heaeun;Sung, Joonyoung;Lee, Hyunsik;Jang, Gyeongik;Kwak, Kiyong;Woo, Sangtae
    • Journal of KIISE
    • /
    • v.45 no.2
    • /
    • pp.106-112
    • /
    • 2018
  • Recently, the number of cyber attacks using malicious code has increased. Various types of malicious code detection techniques have been researched for several years as the damage has increased. In recent years, profiling techniques have been used to identify attack groups. This paper focuses on the identification of attack groups using a detection technique that does not involve malicious code detection. The attacker is identified by using a string or a code signature of the malicious code. In addition, the detection rate is increased by adding a technique to confirm the packing file. We use Yara as a detection technique. We have research about RAT (remote access tool) that is mainly used in attack groups. Further, this paper develops a ruleset using malicious code and packer main feature signatures for RAT which is mainly used by the attack groups. It is possible to detect the attacker by detecting RAT based on the newly created ruleset.

A Study on Treatment Way of a Malicious Code to injected in Windows System File (Windows 시스템 파일에 기생하는 악성코드의 치료 방법 연구)

  • Park, Hee-Hwan;Park, Dea-Woo
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.255-262
    • /
    • 2006
  • A Malicious code is used to SMiShing disguised as finance mobile Vishing, using Phishing, Pharming mail, VoIP service etc. to capture of personal information. A Malicious code deletes in Anti-Virus Spyware removal programs. or to cure use. By the way, the Malicious cord which is parasitic as use a DLL Injection technique, and operate are Isass.exe, winlogon.exe. csrss.exe of the window operating system. Be connected to the process that you shall be certainly performed of an exe back, and a treatment does not work. A user forces voluntarily a process, and rebooting occurs, or a blue screen occurs, and Compulsory end, operating system everyone does. Propose a treatment way like a bird curing a bad voice code to use a DLL Injection technique to occur in these fatal results. Click KILL DLL since insert voluntarily an end function to Thread for a new treatment, and Injection did again the Thread which finish an action of DLL, and an end function has as control Thread, and delete. The cornerstone that the treatment way that experimented on at these papers and a plan to solve will become a researcher or the revolutionary dimension that faced of a computer virus, and strengthen economic financial company meeting Ubiquitous Security will become.

  • PDF