• Title/Summary/Keyword: Malaria, falciparum

Search Result 87, Processing Time 0.019 seconds

Antimalarial Activity and Cytotoxicity of Herb-medicine Against P. falciparum in vitro (전통적으로 말라리아 처방에 다용되는 한약재에 대한 항 말라리아 효능과 세포독서에 대한 연구)

  • Kim, Youn-Chul;Kim, Jong-Ho;Park, Hyun;Kim, Yong-Man;Kim, Min-Kyeoung;Jeon, Byung-Hun;Kim, Hye-Sook;Yun, Ki-Jung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.102-105
    • /
    • 2005
  • Eighteen methanol extracts of herb-medicine used for malarial and antipyretic therapies in Korea were assessed for their antimalarial activities. Eighteen extracts showed evident antimalarial activity with $EC_50$ values ranged from $2.8\;to\;110mg/m{\ell}$. Evodia fructus showed the antimalarial activity of $EC_50\;=\;4.1\;mg/m{\ell}$ and higher selective toxicity(>8) with no cytotocixity for mammalian cells. This indicated that Evodia fructus is potent for a new effective and safe antimalarial agent. The methanol extract of Physalli radix had also strongest antiplasmodial activity with $EC_50$ value of $2.8{\mu}g/m{\ell}$.

Probability of Antibody Formation against Circumsporozoite Protein of Plasmodium vivax among Korean Malaria Patients

  • Nam, Ho-Woo;Song, Kyoung Ju;Ahn, Hye Jin;Yang, Zhaoshou;Chong, Chom-Kyu;Cho, Pyo Yun;Ahn, Seong Kyu;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.2
    • /
    • pp.143-149
    • /
    • 2014
  • To evaluate the seroprevalence against circumsporozoite protein (CSP) of Plasmodium vivax in sera of Korean patients, the central repeating domain (CRD) of CSP was cloned and analyzed. From the genomic DNA of patient's blood, 2 kinds of CSPs were identified to belong to a VK210 type, which is the dominant repeating of GDRA(D/A)GQPA, and named as PvCSPA and PvCSPB. Recombinantly expressed his-tagged PvCSPA or PvCSPB in Escherichia coli reacted well against sera of patients in western blot, with the detecting rate of 47.9% (58/121), which included 15 cases positive for PvCSPA, 6 cases positive for PvCSPB, and 37 cases for both. The mixture of PvCSPA and PvCSPB was loaded to a rapid diagnostic test kit (RDT) and applied with the same set of patient sera, which resulted in detection rates of 57.0% (69/121). When the protein sequences of PvCSPA were compared with those of P. vivax in endemic regions of India and Uganda, they were compatibly homologous to PvCSPA with minor mutations. These results suggested that the recombinant PvCSPA and PvCSPB loaded RDT may be a milestone in latent diagnosis which has been a hot issue of domestic malaria and important for radical therapy in overlapped infections with P. falciparum in tropical and subtropical areas. During the biological process of malarial infection, exposure of CSP to antigen-antibody reaction up to 57.0% is the first report in Korea.

In-vitro Antimalarial Investigations and Molecular Docking Studies of Compounds from Trema orientalis L. (blume) Leaf Extract

  • Samuel, Babatunde Bolorunduro;Oluyemi, Wande Michael;Okedigba, Ayoyinka Oluwaseun
    • Natural Product Sciences
    • /
    • v.28 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • The identification of Plasmodium falciparum enoyl acyl-carrier protein reductase (pfENR) is considered as a potential biological target against malaria. Trema orientalis is considered a rich source of phytochemicals useful in malaria treatment. This study evaluated the in-vitro inhibitory activity of the extract and isolated compounds of T. orientalis leaf; the isolated compounds and the analogues of the most active compound were subjected to in-silico molecular docking studies on pfENR. The methanolic extract of T. orientalis was subjected to repeated chromatographic separation which led to the isolation of some compounds. The isolated compounds from the plant were examined for their antimalarial activity using β-hematin inhibition assay. Virtual screening via molecular docking and ADMET studies were conducted to gain insight into the mechanism of binding of ligand and to identify effective pfENR inhibitors. The isolated compounds and the analogues of the most active isolates were gotten from PubChem library for use in docking study. Hexacosanol and β-sitosterol showed inhibition of the β-hematin formation. The docking results showed that hexacosanol, β-sitosterol and the analogues of β-sitosterol displayed binding energy ranging between -6.1 kcal/mol and -11.6 kcal/mol. Sitosterol glucoside has the highest docking score. Some of the ligands showed more binding affinity than known bioactive compounds used as reference. Analogues of β-sitosterol has been shown to be potential inhibitors of pfENR, therefore, the findings from this study suggest that sitosterol glucoside and ergosterol peroxide could act as antimalarial agents after further lead optimisation investigations.

Isolation of Dibromosceptrin with Antimalarial Activity from the Unidentified Sponge, Agelas sp. (Agelas속의 미동정 해면으로부터 항말라리아 활성을 갖는 Dibromosceptrin의 분리)

  • Park, Yeung-Beom;Lee, Jong-Soo;Lim, Chi-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.189-193
    • /
    • 2004
  • In order to find some lead compounds for the treatment of opportunistic infections of malaria and pathogenic microbes, an undescribed Indonesian sponge Agelas sp. collected at Manado, Indonesian Waters, was suggested containing active compounds. Crude ethanolic extract of the sponge exhibited significant in vitro antimalarial and antimicrobial activity against Plasmodium falciparum (D6 colne) with $IC_{5O}$ values of $8\;{\mu}/ml$ and against pathogenic microbes such as Candida albicans $(150\;{\mu}/ml)$, Cryptococcus neoformans $(<20\;{\mu}/ml)$, Staphylococcus aureus $25\;{\mu}/ml$, methicillin-resistant Staphylococcus aureus $(<20\;{\mu}/ml)$, and Pseudomonas aeruginosa $(<20\;{\mu}/ml)$. Active compound (5.0 mg) was isolated from the ethanolic extracts of the sponge and purified by using silica gel and ODS column, successively. Active compound was elucidated as dibromosceptrin $(C_{22}H_{24}Br_2N_{10}O_2)$ by detailed analysis of FTESI-MS and comparison of $^1H,\;^{13}C$, DEPT and HMQC NMR spectral data with those reported.

Characterization of Pv92, a Novel Merozoite Surface Protein of Plasmodium vivax

  • Lee, Seong-Kyun;Wang, Bo;Han, Jin-Hee;Nyunt, Myat Htut;Muh, Fauzi;Chootong, Patchanee;Ha, Kwon-Soo;Park, Won Sun;Hong, Seok-Ho;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • The discovery and understanding of antigenic proteins are essential for development of a vaccine against malaria. In Plasmodium falciparum, Pf92 have been characterized as a merozoite surface protein, and this protein is expressed at the late schizont stage, but no study of Pv92, the orthologue of Pf92 in P. vivax, has been reported. Thus, the protein structure of Pv92 was analyzed, and the gene sequence was aligned with that of other Plasmodium spp. using bioinformatics tools. The recombinant Pv92 protein was expressed and purified using bacterial expression system and used for immunization of mice to gain the polyclonal antibody and for evaluation of antigenicity by protein array. Also, the antibody against Pv92 was used for subcellular analysis by immunofluorescence assay. The Pv92 protein has a signal peptide and a sexual stage s48/45 domain, and the cysteine residues at the N-terminal of Pv92 were completely conserved. The N-terminal of Pv92 was successfully expressed as soluble form using a bacterial expression system. The antibody raised against Pv92 recognized the parasites and completely merged with PvMSP1-19, indicating that Pv92 was localized on the merozoite surface. Evaluation of the human humoral immune response to Pv92 indicated moderate antigenicity, with 65% sensitivity and 95% specificity by protein array. Taken together, the merozoite surface localization and antigenicity of Pv92 implicate that it might be involved in attachment and invasion of a merozoite to a new host cell or immune evasion during invasion process.

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

An International Collaborative Program To Discover New Drugs from Tropical Biodiversity of Vietnam and Laos

  • Soejarto, Djaja D.;Pezzuto, John M.;Fong, Harry H.S.;Tan, Ghee Teng;Zhang, Hong Jie;Tamez, Pamela;Aydogmus, Zeynep;Chien, Nguyen Quyet;Franzblau, Scott G.;Gyllenhaal, Charlotte;Regalado, Jacinto C.;Hung, Nguyen Van;Hoang, Vu Dinh;Hiep, Nguyen Tien;Xuan, Le Thi;Hai, Nong Van;Cuong, Nguyen Manh;Bich, Truong Quang;Loc, Phan Ke;Vu, Bui Minh;Southavong, Boun Hoong
    • Natural Product Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • An International Cooperative Biodiversity Group (ICBG) program based at the University of Illinois at Chicago initiated its activities in 1998, with the following specific objectives: (a) inventory and conservation of of plants of Cuc Phuong National Park in Vietnam and of medicinal plants of Laos; (b) drug discovery (and development) based on plants of Vietnam and Laos; and (c) economic development of communities participating in the ICBG project both in Vietnam and Laos. Member-institutions and an industrial partner of this ICBG are bound by a Memorandum of Agreement that recognizes property and intellectual property rights, prior informed consent for access to genetic resources and to indigenous knowledge, the sharing of benefits that may arise from the drug discovery effort, and the provision of short-term and long-term benefits to host country institutions and communities. The drug discovery effort is targeted to the search for agents for therapies against malaria (antimalarial assay of plant extracts, using Plasmodium falciparum clones), AIDS (anti-HIV-l activity using HOG.R5 reporter cell line (through transactivation of the green fluorescent protein/GFP gene), cancer (screening of plant extracts in 6 human tumor cell lines - KB, Col-2, LU-l, LNCaP, HUVEC, hTert-RPEl), tuberculosis (screening of extracts in the microplate Alamar Blue assay against Mycobacterium tuberculosis $H_{37}Ra\;and\;H_{37}Rv),$ all performed at UIC, and CNS-related diseases (with special focus on Alzheimer's disease, pain and rheumatoid arthritis, and asthma), peformed at Glaxo Smith Kline (UK). Source plants were selected based on two approaches: biodiversity-based (plants of Cuc Phuong National Park) and ethnobotany-based (medicinal plants of Cuc Phuong National Park in Vietnam and medicinal plants of Laos). At mc, as of July, 2001, active leads had been identified in the anti-HIV, anticancer, antimalarial, and anti- TB assay, after the screening of more than 800 extracts. At least 25 biologically active compounds have been isolated, 13 of which are new with anti-HIV activity, and 3 also new with antimalarial activity. At GSK of 21 plant samples with a history of use to treat CNS-related diseases tested to date, a number showed activity against one or more of the CNS assay targets used, but no new compounds have been isolated. The results of the drug discovery effort to date indicate that tropical plant diversity of Vietnam and Laos unquestionably harbors biologically active chemical entities, which, through further research, may eventually yield candidates for drug development. Although the substantial monetary benefit of the drug discovery process (royalties) is a long way off, the UIC ICBG program provides direct and real-term benefits to host country institutions and communities.