• Title/Summary/Keyword: Major element

Search Result 1,575, Processing Time 0.026 seconds

Buckling Analysis of Roll Forming Process using Finite element method (유한요소법을 이용한 롤포밍 공정에서의 버클링 해석)

  • Kim, Young-In;Kim, Jong-Hun;Jeoung, Young-Chul;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1451-1456
    • /
    • 2003
  • In code roll forming processes, the sheet metal strip is gradually and successively bent into a desired profile. Occurrence of buckling is one of the major defects. Buckling may occur due to longitudinal stress and it is difficult to predict buckling behavior. In this study an analytical method for buckling behavior during roll forming is proposed. All numerical simulations are performed by finite element analysis. The behavior of buckling can be predicted with the simulation modeling of the finite element method.

The Application of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  • Choe, Yeong;Lee, Gyu-Ho;Go, Dae-Cheol;Kim, Byeong-Min;Choe, Jae-Chan
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.562-569
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage then an intermediate stage has to b added the process sequence to avoid failure during the drawing operation and the optimal process design considering for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. From the results of finrte element analysis the optimal value of drawing ratio is obtained which contributes to the more uniform distribution of thickess and the smaller values of the ductile fracture infinal cup.

  • PDF

Finite element analysis based fatigue life evaluation approach for railway bridges: a study in Indian scenario

  • Ajmal, P.C. Hisham;Mohammed, Althaf
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.429-443
    • /
    • 2018
  • Fatigue is a principal failure mode for steel structures, and it is still less understood than any other modes of failure. Fatigue life estimation of metal bridges is a major issue for making cost effective decisions on the rehabilitation or replacement of existing infrastructure. The fatigue design procedures given by the standard codes are either empirical or based on nominal stress approach. Since the fatigue life estimation through field measurements is difficult and costly, more researches are needed to develop promising techniques in the fatigue analysis of bridges through Finite Element Analysis (FEA). This paper aims to develop a methodology for the Fatigue life estimation of railway steel bridge using FEA. The guidelines of IIW-1823-07 were used in the development of the methodology. The Finite Element (FE) package ANSYS and the programming software MATLAB were used to implement this methodology on an Indian Railway Standard (IRS) welded plate girder bridge. The results obtained were compared with results from published literature and found satisfactory.

The use of finite element techniques for the deformation and stress of cylinder liner (유한요소법을 이용한 실린더 라이너의 변형과 응력에 관한 연구)

  • 오성환;조원행
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.55-62
    • /
    • 1985
  • This study modeled in axisymmetric solid elements and analyzed the neighbourhood of the contact surface zone between liner and block in a diesel engine. The results of finite element analysis show that this model is deformed by bolt jointed load and pressure load and that stresses can vary much due to major dimensional changes in the joint area. Guidelines have been developed for selecting fillet radii and for the width of the contact area between liner and block.

  • PDF

Three-Dimensional Finite Element Modeling for the Yellow Sea - Initial approach -

  • Suh, Seung-Won;M.G.G. Foreman
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.14-14
    • /
    • 1996
  • In order to understand the tidal hydrodynamics of the Yellow Sea and Parts of the East China Sea, we have developed a three-dimensional, fine resolution, nonlinear, harmonic finite element model. Major four tidal constituents, M$_2$, S$_2$, K$_1$ and O$_1$ are used as forcing along the open boundary. Due to the shallowness of the region, tidal results are strongly affected by the bottom roughness coefficients, especially for the quadratic form. (omitted)

  • PDF

Nonlinear Finite Element Analysis of Reinforced Concrete Beams (철근 콘크리트 보의 비선형 유한요소 해석)

  • 오병환;이성로;이형준;신호상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.49-53
    • /
    • 1991
  • The finite element method is applied to analyze the complicated behavior of reinforced concrete beams. The nonlineartiy in concrete and reinforcement steel has been considered. The effects of bond-slip and aggregate interlock have been also taken into account. It is found that realistic analysis requires those major nonlinearities to be included in the analysis.

  • PDF

Numerical Human Head Model for Traumatic Injury Assessment

  • Park, Hyung-Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.995-1001
    • /
    • 2001
  • The finite element human head model is developed for traumatic injury assessment. The model is constructed based on the precise anatomical geometry and validated with test results. In this paper, structural and physiologic explanation of human head will be introduced as well as the modeling methodology. Some of simulation results are also chosen to present major features of the model.

  • PDF

Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring (판 스프링의 비선형 동특성 해석)

  • 임홍재;권영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

A Study on Development of Channel Cutting Machine (형재 절단기 개발에 관한 연구)

  • 이춘만
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.140-143
    • /
    • 1999
  • The major objective of the present paper is to develop a channel cutting machine and to establish an analytical technique for actual shearing process. Isothermal finite element(FE)-simulation of the shearing process are carried out using FE software DEFORM. The element-kill method has enabled the achievement of FE-simulation from the initial stage to the final stage of the shearing process. The effects of the punch-die clearance on the shearing process are investigated.

  • PDF

A TEST VERIFIED MODEL DEVELOPMENT STUDY FOR A NUCLEAR WATER CHILLER USING THE SEISMIC QUALIFICATION ANALYSIS AND TEST

  • Sur, Uk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.355-360
    • /
    • 2011
  • This paper is a study on a nuclear water chiller. It presents a test-verified finite element model of a water chiller to be used at a Nuclear Power Plant. The test-verified model predicts natural frequencies within 5% for all major modes below 50 Hz. This model accurately represents the dynamic characteristics of the actual hardware and is qualified for its use in the final stress analysis for seismic verification.