• 제목/요약/키워드: Major cutting edge

검색결과 64건 처리시간 0.018초

공구끝단반경이 고려된 2차원 금속절삭에 대한 열-점소성 유한요소해석 (Thermo-viscoplastic finite element analysis of orthogonal metal cutting considered tool edge radius)

  • 김국원;이우영;신효철
    • 대한기계학회논문집A
    • /
    • 제22권1호
    • /
    • pp.1-15
    • /
    • 1998
  • In this paper, thermo-viscoplastic finite element analysis of the effect of tool edge radius on cutting process are performed. The thermo-viscoplastic cutting model is capable of dealing with free chip geometry and chip-tool contact length. The coupling with thermal effects is also considered. Orthogonal cutting experiments are performed for 0.2% carbon steel with tools having 3 different edge radii and the tool forces are measured. The experimental results are discussed in comparison with the results of the FEM analysis. From the study, we confirm that this cutting model can well be applied to the cutting process considered the tool edge radius and that a major causes of the "size effect" is the tool edge radius. With numerical analysis, the effects of the tool edge radius on the stress distributions in workpiece, the temperature distributions in workpiece and tool, and the chip shape are investigated.estigated.

페이스 밀링 가공시 출구버 형성에 관한 연구 (A Study on Exit Burr Formation in Face Milling)

  • 한상우;고성림
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.55-62
    • /
    • 2002
  • A burr has been defined as undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In face milling operation, burrs are formed along five edges on the workpiece. In this study, the primary interest is about exit burr The influence of the cutting parameters on the formation of exit burrs in face milling will be described experimentally. Using the results of experimental study, burr types are classified according to appearance and formation mechanism in exit burr. The burr formation mechanism in each type of burr is suggested. Data bases are developed to predict burr formation result.

페이스 밀링 가공시 버형성에 관한 연구 (II) (A Study on Burr Formation in Face Milling(II))

  • 한상우;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.810-813
    • /
    • 2000
  • Burr makes trobles on manufacturing process due to deburring cost, quality of products and productivity. This paper described the results of experimental study on the influence of the cutting parameters on the formation of exit burrs in face milling. The cutting parameters were investigated changing exit angle, rake nagle , lead angle in tool geometry as well as feed per tooth. Also we carried out experimets on several materials. Using the result of experimental study, burr types are classified according to appearance and formation mechanism in exit burr and we are considered the burr formation in each type of burr.

  • PDF

비절삭저항 상수 변화에 따른 절삭력 분석 (An analysis of cutting force according to specific force coefficients)

  • 김종도;윤문철
    • 한국기계가공학회지
    • /
    • 제13권2호
    • /
    • pp.108-116
    • /
    • 2014
  • Considering the run-out effect and cutting force coefficients, the cutting force profile of half immersion end-milling was analyzed in detail. The effects of three specific cutting-force coefficients and three edge-force coefficients are verified. Through a detailed investigation, it is proved that the radial cutting force coefficients and are the major factors which increase the cutting forces Fx and Fy in end-milling. However, the axial cutting force coefficients have no influence on the force Fx and Fy changes in end-milling. Also, the analyzed end-milling force model shows good consistency with the actual measured force with regard to Fx and Fy. Thus, this model can be used for the prediction of the force history in end-milling with run-out, and it incurs a different force history with different start and exit immersion angles as well as holding effects.

절삭력 제어 프로그램을 이용한 Inconel718 소재의 생산성 향상에 관한 연구 (A Study on the Productivity Improvement of Inconel 718 Material Using Cutting Force Control Program)

  • 이승헌;손황진;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.41-46
    • /
    • 2017
  • Productivity improvement and cost reduction in the aircraft industry have become major industrial objectives, and improving productivity by reducing machining time has become a key focus. When numerical cutting code is created by CAM software, such as CATIA or UG-NX, it is impossible to control machining feed speed using cutting force changes depending on the machining tool path. However, machining an aircraft engine part from difficult material, such as Inconel 718, takes a long time, and tool chipping or breakage often occurs from forcing the machining path too quickly. This study investigated and verified the reliability of the AdvantEdge production module (PM)using cutting power tests. In particular, diffuser and diffuser case parts were considered, comparing cutting power and machining time using AdvantEdge PM and CATIA.

스테인레스강 절삭가공에서 공구의 온도 특성에 대한 실험적 연구 (An Experimental Study of the Temperature Characteristics of a Cutting Tool in Machining of Stainless Steel)

  • 권용기
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.9-16
    • /
    • 1996
  • This is an experimental investigation of the temperature generated in a cutting tool during the machining of stainless steel. The temperature results from the wear of the cutting tool are considered in order to investigate the relation between cause and effect of these factors. This possibility has been tested using a thermocouple technique to record temperature vs. time curves for a variety of cutting conditions. This is done by employing a thermocouple inserted on the tool tip near the major cutting edge. Temperature distributions are calculated using finite element method and compared to the contour maps measured by an optical system. It suggests that the temperature gradients and the tool performance will be dependent on certain facotrs in tool geometry when cutting this material.

  • PDF

바이올린용 소재의 진동모드 해석에 관한 연구 -제2보. 소재 연륜폭 및 절삭방향이 브릿지의 공진주파수에 미치는 영향 (Studies on the vibrational modal analysis of solid woods for the violin making II, Effect of annual ring width and cutting direction on the resonant frequency of the bridges)

  • 정우양
    • 한국가구학회지
    • /
    • 제16권1호
    • /
    • pp.17-23
    • /
    • 2005
  • European maple is famous for the optimum solid wood for making bridge which is the most important part in violin acoustics. This study was carried out to investigate the variation of main features, i. e. annual ring width and cutting direction of costly imported violin bridge blanks and to examine the effect of these features of the blanks on the vibrational characteristics of bridge blanks. Imported violin bridge blanks had somewhat large variation in major macroscopical and physical properties and there was little relationship between annual ring density and weight of maple blanks. Resonant frequency of violin bridge blanks had some positive correlation with weight, however, damping having negative relationship with frequency was seldom affected by any physical properties of the maple blanks. Deviation from the radial cutting of tail side(ray direction from top toward feet on the edge of bridge blank) lowered the resonant frequency. Consequently, weight and ray direction should be taken for the critical quality decisive factors(QDF) of incoming bridge blanks by not only inspectors also luthiers who tune the bridge by shaping and are responsible for the final timbre quality of this complicate instrument.

  • PDF

엔드밀 가공시 공구변형을 고려한 표면형성 해석 (Surface Generation in End Milling considering Tool Deflection)

  • 이상규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.119-124
    • /
    • 1996
  • End milling operation is very important in machining precision components. Deterioration of surface roughness and surface geometry will cause more process for surface finishing. According to the feed rate and the cutting edge geometry, the cusp which is geometrically uncut surface is determined. To reduce the cost for dinishing operation after end milling, the cusp must be remaianed in small size as possible. Due to the cylindrical type of the end mill, tool deflection is one of the main problems in surface generation. The cutting resistance and the rigidity of the end mill will determine the size of tool deflection. One more important factor which deteriorate surface quality comes from the error in manufacturing end mills. Run-out of end mill which is the difference of the radius of each cutting edges will produce the difference of the cusp size in every rotation of end mill. These three major factors to the surface quality will be analized and the result will be compared with experimental ressult.

  • PDF

Evaluation of delamination in the drilling of CFRP composites

  • Feroz, Shaik;Ramakrishna, Malkapuram;K. Chandra, Shekar;P. Dhaval, Varma
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.375-390
    • /
    • 2022
  • Carbon Fiber Reinforced Polymer (CFRP) composite provides outstanding mechanical capabilities and is therefore popular in the automotive and aerospace industries. Drilling is a common final production technique for composite laminates however, drilling high-strength composite laminates is extremely complex and challenging. The delamination of composites during the drilling at the entry and exit of the hole has a severe impact on the results of the holes surface and the material properties. The major goal of this research is to investigate contemporary industry solutions for drilling CFRP composites: enhanced edge geometries of cutting tools. This study examined the occurrence of delamination at the entry and exit of the hole during the drilling. For each of the 80°, 90°, and 118°point angle uncoated Brad point, Dagger, and Twist solid carbide drills, Taguchi design of experiments were undertaken. Cutting parameters included three variable cutting speeds (100-125-150 m/min) and feed rates (0.1-0.2-0.3 mm/rev). Brad point drills induced less delamination than dagger and twist drills, according to the research, and the best cutting parameters were found to be a combination of maximum cutting speed, minimum feed rate, and low drill point angle (V:150 m/min, f: 0.1 mm/rev, θ: 80°). The feed rate was determined to be the most efficient factor in preventing hole entry and exit delamination using analysis of variance (ANOVA). Regression analysis was used to create first-degree mathematical models for each cutting tool's entrance and exit delamination components. The results of optimization, mathematical modelling, and experimental tests are thought to be reasonably coherent based on the information obtained.

Whirling machine의 성능 개선을 위한 연구 (A Study on Performance Improvement of Whirling Machines)

  • 이정기;양우석;손재석;한희덕;김한수
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.