• 제목/요약/키워드: Major Histocompatibility Complex-B

검색결과 31건 처리시간 0.023초

Identification of new major histocompatibility complex-B Haplotypes in Bangladesh native chickens

  • Thisarani Kalhari Ediriweera;Prabuddha Manjula;Jaewon Kim;Jin Hyung Kim;Seonju Nam;Minjun Kim;Eunjin Cho;Mohammad Shamsul Alam Bhuiyan;Md. Abdur Rashid;Jun Heon Lee
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.826-831
    • /
    • 2024
  • Objective: The major histocompatibility complex in chicken demonstrates a great range of variations within varities, breeds, populations and that can eventually influence their immuneresponses. The preset study was conducted to understand the major histocompatibility complex-B (MHC-B) variability in five major populations of Bangladesh native chicken: Aseel, Hilly, Junglefowl, Non-descript Deshi, and Naked Neck. Methods: These five major populations of Bangladesh native chicken were analyzed with a subset of 89 single nucleotide polymorphisms (SNPs) in the high-density MHC-B SNP panel and Kompetitive Allele-Specific polymerase chain reaction genotyping was applied. To explore haplotype diversity within these populations, the results were analyzed both manually and computationally using PHASE 2.1 program. The phylogenetic investigations were also performed using MrBayes program. Results: A total of 136 unique haplotypes were identified within these five Bangladesh chicken populations, and only one was shared (between Hilly and Naked Neck). Phylogenetic analysis showed no distinct haplotype clustering among the five populations, although they were shared in distinct clades; notably, the first clade lacked Naked Neck haplotypes. Conclusion: The present study discovered a set of unique MHC-B haplotypes in Bangladesh chickens that could possibly cause varied immune reponses. However, further investigations are required to evaluate their relationships with global chicken populations.

Molecular Cloning of Chicken Major Histocompatibility Complex Class II Molecules

  • Sung, Aree-Moon
    • Toxicological Research
    • /
    • 제8권2호
    • /
    • pp.331-342
    • /
    • 1992
  • The chicken major histocompatibility complex (MHC), the B complex, is beginning to be analyzed at the DNA level. Inbred lines of chickens have been reported to possess 3~5 MHC class II genes. To further analyzed the molecular structure of the chicken MHC class II genes, cDNA clones coding for chicken MHC class II (B-L) ${\beta}$ chain molecules were isolated from chicken spleen and liver. Tissue-specific transcription of B-L ${\beta}$genes was studied by Northern blot analysis. A high level of expression was detected for spleen poly(A)$^+$ RNA whereas a faint signal was detected for liver poly(A)$^+$ RNA. Twenty-nine cDNA clones were isolated from the spleen and eight cDNA clones were isolated from the liver. Based on restriction maps, most clones could be clustered into one family of genes. Four cDNA clones were sequenced (S7, S10 and S19 from the spleen and L1, which was identical to S19, from the liver). Complete amino acid sequences of B-L ${\beta}$ chain molecules were predicated from the nucleotide sequences of the cDNA clones. Although both the nature and the location of the conserved residues were similar in chicken and mammalian sequences, some species-specific differences were found, suggesting that the structures of the B-L molecules are similar, but not identical to their mammalian counterparts.

  • PDF

Monitoring conservation effects on a Chinese indigenous chicken breed using major histocompatibility complex B-G gene and DNA Barcodes

  • Tu, Yunjie;Shu, Jingting;Ji, Gaige;Zhang, Ming;Zou, Jianmin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1558-1564
    • /
    • 2018
  • Objective: We report monitoring conservation effect for a Chinese indigenous chicken (Langshan) breed using major histocompatibility complex (MHC) and DNA barcords. Methods: The full length of MHC B-G gene and mitochondrial cytochrome oxidase I (COI) gene in generations 0, 5, 10, 15, 16, and 17 was measured using re-sequencing and sequencing procedures, respectively. Results: There were 292 single nucleotide polymorphisms of MHC B-G gene identified in six generations. Heterozygosity (He) and polymorphic information content (PIC) of MHC B-G gene in generations 10, 15, 16, and 17 remained stable. He and PIC of MHC B-G gene were different in six generations, with G10, G15, G16, G17 >G5>G0 (p<0.05). For the COI gene, there were five haplotypes in generations 0, 5, 10, 15, 16, and 17. Where Hap2 and Hap4 were the shared haplotypes, 164 individuals shared Hap2 haplotypes, while Hap1 and Hap3 were the shared haplotypes in generations 0 and 5 and Hap5 was a shared haplotype in generations 10, 15, 16, and 17. The sequence of COI gene in 6 generations was tested by Tajima's and D value, and the results were not significant, which were consistent with neutral mutation. There were no differences in generations 10, 15, 16, and 17for measured phenotypic traits. In other generations, for annual egg production, with G5, G10, G15, G16, G17>G0 (p<0.05). For age at the first egg and age at sexual maturity, with G10, G15, G16, G17>G5>G0 (p<0.05). Conclusion: Combined with the results of COI gene DNA barcodes, MHC B-G gene, and phenotypic traits we can see that genetic diversity remained stable from generations 10 to 17 and the equimultiple random matching pedigrees conservation population conservation effect of Langshan chicken was effective as measured by these criteria.

Major histocompatibility complex genes exhibit a potential immunological role in mixed Eimeria-infected broiler cecum analyzed using RNA sequencing

  • Minjun Kim;Thisarani Kalhari Ediriweera;Eunjin Cho;Yoonji Chung;Prabuddha Manjula;Myunghwan Yu;John Kariuki Macharia;Seonju Nam;Jun Heon Lee
    • Animal Bioscience
    • /
    • 제37권6호
    • /
    • pp.993-1000
    • /
    • 2024
  • Objective: This study was conducted to investigate the differential expression of the major histocompatibility complex (MHC) gene region in Eimeria-infected broiler. Methods: We profiled gene expression of Eimeria-infected and uninfected ceca of broilers sampled at 4, 7, and 21 days post-infection (dpi) using RNA sequencing. Differentially expressed genes (DEGs) between two sample groups were identified at each time point. DEGs located on chicken chromosome 16 were used for further analysis. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis was conducted for the functional annotation of DEGs. Results: Fourteen significant (false discovery rate <0.1) DEGs were identified at 4 and 7 dpi and categorized into three groups: MHC-Y class I genes, MHC-B region genes, and non-MHC genes. In Eimeria-infected broilers, MHC-Y class I genes were upregulated at 4 dpi but downregulated at 7 dpi. This result implies that MHC-Y class I genes initially activated an immune response, which was then suppressed by Eimeria. Of the MHC-B region genes, the DMB1 gene was upregulated, and TAP-related genes significantly implemented antigen processing for MHC class I at 4 dpi, which was supported by KEGG pathway analysis. Conclusion: This study is the first to investigate MHC gene responses to coccidia infection in chickens using RNA sequencing. MHC-B and MHC-Y genes showed their immune responses in reaction to Eimeria infection. These findings are valuable for understanding chicken MHC gene function.

Priming of Autoreactive $CD8^+T$ Cells Is Inhibited by Immunogenic Peptides Which Are Competitive for Major Histocompatibility Complex Class I Binding

  • You, Sooseong;Choi, Yoon Seok;Hong, Seokchan;Shin, Eui-Cheol
    • IMMUNE NETWORK
    • /
    • 제13권3호
    • /
    • pp.86-93
    • /
    • 2013
  • In the present study, we investigated if priming of autoreactive $CD8^+T$ cells would be inhibited by competitive peptides for major histocompatibility complex (MHC) class I binding. We used a mouse model of vitiligo which is induced by immunization of $K^b$-binding tyrosinase-related protein 2 (TRP2)-180 peptide. Competitive peptides for $K^b$ binding inhibited IFN-${\gamma}$production and proliferation of TRP2-180-specific $CD8^+T$ cells upon ex vivo peptide restimulation, while other MHC class I-binding peptides did not. In mice, the capability of inhibition was influenced by T-cell immunogenicity of the competitive peptides. The competitive peptide with a high T-cell immunogenicity efficiently inhibited priming of TRP2-180-specific $CD8^+T$ cells in vivo, whereas the competitive peptide with a low T-cell immunogenicity did not. Taken together, the inhibition of priming of autoreactive $CD8^+T$ cells depends on not only competition of peptides for MHC class I binding but also competitive peptide-specific $CD8^+T$ cells, suggesting that clonal expansion of autoreactive T cells would be affected by expansion of competitive peptide-specific T cells. This result provides new insights into the development of competitive peptides-based therapy for the treatment of autoimmune diseases.

Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

  • Molee, A.;Kongroi, K.;Kuadsantia, P.;Poompramun, C.;Likitdecharote, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권1호
    • /
    • pp.29-35
    • /
    • 2016
  • The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study.

Sepsis Mortality in CIITA Deficient Mice is Associated with Excessive Release of High-mobility Group Box 1

  • Kim, Ji-Young;Kim, Ju-Hyun;Seo, Jae-Nam;Oh, Kwon-Ik
    • IMMUNE NETWORK
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2008
  • Background: Down regulation of major histocompatibility complex class II transactivator (CIITA) has been identified as a major factor of immunosuppression in sepsis and the level of CIITA expression inversely correlates with the degree of severity. However, it has not been fully elucidated whether the lower expression of CIITA is a cause of disease process or a just associated sign. Here we determined whether the CIITA deficiency decreased survival rate using murine sepsis model. Methods: Major histocompatibility complex class II (MHC-II) deficient, CIITA deficient and wild type B6 mice were subjected to cecal ligation puncture (CLP) surgery. CIITA and recombination activation gene (RAG)-1 double deficient mice were generated to test the role of lymphocytes in CIITA-associated sepsis progression. Results: Sepsis mortality was enhanced in CIITA deficient mice, not by impaired bacterial clearance resulted from CD4 T cell depletion, but hyper-inflammatory response such as excessive release of a pro-inflammatory cytokine, high-mobility group box 1 (HMGB1). Conclusion: Our results demonstrate that CIITA deficiency affects the course of sepsis via the unexpected function of CIITA, regulation of cytokine release.

Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Tran, Ha Thi Thanh;Dang, Hoang Vu;Nguyen, Viet Khong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.614-628
    • /
    • 2019
  • Objective: The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods: Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results: Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%-99%, while homologies between chicken and mammal proteins ranged between 13%-19%, and 13%-69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and ${\beta}2-microglobulin$ and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion: These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, ${\beta}2-microglobulin$, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.

Can herbal drug(s) meet the challenges of genomewide screen results on rheumatoid arthritis

  • Paul, Bholanath
    • Advances in Traditional Medicine
    • /
    • 제5권4호
    • /
    • pp.251-261
    • /
    • 2005
  • Rheumatoid arthritis (RA) is an autoimmune/inflammatory disorder with a complex genetic component. RA is characterized by chronic inflammation of the synovial membrane in the joint, which leads to the progressive destruction of articular cartilage, ligament and bone. Several cytokines such as tumor necrosis $factor-{\alpha}\;TNF-{\alpha}\;and\;interleukin-1{\beta}\;(IL-1{\beta})$ and interleukin-6 (IL-6) have been implicated in the pathological mechanisms of synovial tissue proliferation, joint destruction and programmed cell death in rheumatoid joint. Genome wide screening of subjects suffering from autoimmune diseases especially arthritis revealed linkage to inflammatory molecules like $TNF-{\alpha},\;IL-1{\beta}$ and IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappaB $(NF-{\kappa}B)$ and human leucocyte antigen/major histocompatibility complex (HLA/MHC) locus. The status of the pharmacological mechanism of herbal drugs in the light of genome wide screening results has been discussed to reinforce the therapeutic potential and the pharmacological basis of the herbal drugs.

HY 항원 불일치 췌도 이식에 의한 면역 관용의 유도 (Immune Tolerance in Murine Islet Transplantation Across HY Disparity)

  • 최승은;박정규
    • IMMUNE NETWORK
    • /
    • 제4권1호
    • /
    • pp.53-59
    • /
    • 2004
  • Background: Minor histocompatibility HY antigen, as a transplantation antigen, has been known to cause graft rejection in MHC (major histocompatibility complex) matched donor-recipient. The aim of our study is to investigate the role of male antigen (HY) disparity on MHC matched pancreatic islet transplantation and to examine the mechanism of the immune reaction. Methods: Pancreatic islets were isolated and purified by collagen digestion followed by Ficoll gradient. The isolated islets of male C57BL6/J were transplanted underneath the kidney capsule of syngeneic female mice rendered diabetic with streptozotocine. Blood glucose was monitored for the rejection of engrafted islets. After certain period of time, tail to flank skin transplantation was performed either on mouse transplanted with HY mismatched islets or on sham treated mouse. The rejection was monitored by scoring gross pathology of the engrafted skin. Results: HY mismatched islets survived more than 300 days in 14 out of 15 mice. The acceptance of second party graft (male B6 islets) and the rejection of third party graft (male BALB/c islets) in these mice suggested the tolerance to islets with HY disparity. B6 Skin with HY disparity was rejected on day $25{\pm}7$. However, HY mismatched skin transplanted on the mice tolerated to HY mismatched islets survived more than 240 days. Tetramer staining in these mice indicated the CTL recognizing MHC Db/Uty was not deleted or anergized. Conclusion: The islet transplantation across HY disparity induced tolerance to HY antigen in C57BL6 mouse, which in turn induced tolerance to HY mismatched skin, which otherwise would be rejected within 25 days. The MHC tetramer staining suggested the underlying mechanisms would not be clonal deletion or anergy.