• Title/Summary/Keyword: Major Histocompatibility Complex [MHC]

Search Result 68, Processing Time 0.024 seconds

Expression Pattern of Immunoproteasome Subunits in Human Thymus

  • Oh, Kwon-Ik;Seo, Jae-Nam
    • IMMUNE NETWORK
    • /
    • v.9 no.6
    • /
    • pp.285-288
    • /
    • 2009
  • The expression pattern of immunoproteasomes in human thymus has not been analyzed but may have important consequences during thymic selection. Here we examined the expression patterns of immunoproteasome subunits in fetal and adult thymic tissues by immunohistochemistry and found that all three subunits are expressed in both cortical and medullary stromal cells. These data suggest that thymic selection in human can be affected by peptide repertoires generated by immunoproteasomes.

형질전환 식물세포배양을 이용한 monoclonal antibody(mAb)의 생산

  • Hong, Sin-Yeong;Gwon, Tae-Ho;Jang, Yong-Seok;Yang, Mun-Seok
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.215-216
    • /
    • 2001
  • Mouse monoclonal antibody(mAb) with an antigen specificity for major histocompatibility complex class Il(MHC class II) was produced and secreted from tobacco cell suspension culture by successive sexual crossesu. Expression and secretion of assembled antibody was observed in transgenic tobacco cell suspension culture by wetern blot analysis.

  • PDF

The Emerging Role of Natural Killer Cells in Innate and Adaptive Immunity

  • Kim, Eun-Mi;Ko, Chang-Bo;Myung, Pyung-Keun;Cho, Daeho;Choi, Inpyo;Kang, Hyung-Sik
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.205-215
    • /
    • 2004
  • In the early host defense system, effector function of natural killer (NK) cells results in natural killing against target cells such as microbe-infected, malignant, and certain allogenic cells without prior stimulation. NK cell cytotoxicity is selectively regulated by homeostatic prevalence between a repertoire of both activating and inhibitory receptors, and the discrimination of untransformed cells is achieved by recognition of major histocompatibility complex (MHC) class I alleles through inhibitory signals. Although it is well known that the bipotential T/NK progenitors are derived from the common precusor, functional mechanisms in terms of the development of NK cells remain to be further investigated. NK cells are mainly involved in innate immunity, but recent studies have been reported that they also play a critical role in adaptive immune responses through interaction with dendritic cells (DC). This interaction will provide effector functions and development of NK cells, and elucidation of its precise mechanism may lead to therapeutic strategies for effective treatment of several immune diseases.

Analysis of Swine Leukocyte Antigen Haplotypes in Yucatan Miniature Pigs Used as Biomedical Model Animal

  • Choi, Nu-Ri;Seo, Dong-Won;Choi, Ki-Myung;Ko, Na-Young;Kim, Ji-Ho;Kim, Hyun-Il;Jung, Woo-Young;Lee, Jun-Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.321-326
    • /
    • 2016
  • The porcine major histocompatibility complex (MHC) is called swine leukocyte antigen (SLA), which controls immune responses and transplantation reactions. The SLA is mapped on pig chromosome 7 (SSC7) near the centromere. In this study, 3 class I (SLA-1, SLA-3, and SLA-2) and 3 class II (DRB1, DQB1, and DQA) genes were used for investigation of SLA haplotypes in Yucatan miniature pigs in Korea. This pig breed is a well-known model organism for biomedical research worldwide. The current study indicated that Korean Yucatan pig population had 3 Class I haplotypes (Lr-4.0, Lr-6.0, and Lr-25.0) and 3 class II haplotypes (Lr-0.5, Lr-0.7, and Lr-0.25). The combinations of SLA class I and II haplotype together, 2 homozygous (Lr-4.5/4.5 and Lr-6.7/6.7) and 3 heterozygous (Lr-4.5/6.7, Lr-4.5/25.25, and Lr-6.7/25.25) haplotypes were identified, including previously unidentified new heterozygous haplotypes (Lr-4.5/4.7). In addition, a new SLA allele typing method using Agilent 2100 bioanalyzer was developed that permitted more rapid identification of SLA haplotypes. These results will facilitate the breeding of SLA homozygous Yucatan pigs and will expedite the possible use of these pigs for the biomedical research, especially xenotransplantation research.

T Lymphocyte Development and Activation in Humanized Mouse Model

  • Lee, Ji Yoon;Han, A-Reum;Lee, Dong Ryul
    • Development and Reproduction
    • /
    • v.23 no.2
    • /
    • pp.79-92
    • /
    • 2019
  • Humanized mice, containing engrafted human cells and tissues, are emerging as an important in vivo platform for studying human diseases. Since the development of Nod scid gamma (NSG) mice bearing mutations in the IL-2 receptor gamma chain, many investigators have used NSG mice engrafted with human hematopoietic stem cells (HSCs) to generate functional human immune systems in vivo, results in high efficacy of human cell engraftment. The development of NSG mice has allowed significant advances to be made in studies on several human diseases, including cancer and graft-versus-host-disease (GVHD), and in regenerative medicine. Based on the human HSC transplantation, organ transplantation including thymus and liver in the renal capsule has been performed. Also, immune reconstruction of cells, of the lymphoid as well as myeloid lineages, has been partly accomplished. However, crosstalk between pluripotent stem cell derived therapeutic cells with human leukocyte antigen (HLA) mis/matched types and immune CD3 T cells have not been fully addressed. To overcome this hurdle, human major histocompatibility complex (MHC) molecules, not mouse MHC molecules, are required to generate functional T cells in a humanized mouse model. Here, we briefly summarize characteristics of the humanized mouse model, focusing on development of CD3 T cells with MHC molecules. We also highlight the necessity of the humanized mouse model for the treatment of various human diseases.

Characteristics and Improving Breed of Economic Traits of Korea Native Chicken (한국 재래 닭 품종 특성 및 초기성장 개량을 위한 분자표지 개발)

  • Oh J. D.;Park M. H.;Kong H. S.;Lee H. K.;Jeon G. J.;Yeon S. H.;Sang B. D.;Choi C. H.;Cho B. W.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • This study was conducted to estimate the effects of genotype for chicken major histocompatibility complex (MHC) B-LB genes on economic traits. To detect polymorphism, 400 bp fragments of MHC B-LB genes were obtained and sequenced. After digestions using restriction enzyme Hea III, two restriction enzyme sites were observed. There were two mutations at position 427 and 651 those were decided as Type I and Type II, respectively. Using RFLP analyses, type I were genotyped to TT, TC and CC, and type II to MM, Mm and mm. The relatively higher TC genotype frequencies (0.8) of Type I and Mm genotype frequencies (0.88) of Type II were observed in Korean native chickens. The effects of the genotype on 150 days body weight trait were investigated by the associations of CC and Mm genotypes (P<0.05) in Korean native chickens. This result suggests that a significant association exists between the SNP and 150 days body weight.

Analysis of the Relationship between MHC-DRB1 Gene Polymorphism and Hydatidosis in Kazakh Sheep

  • Li, Ren-Yan;Jia, Bin;Zhang, Wen-Ju;Zhao, Zong-Sheng;Shi, Guo-Qing;Shen, Hong;Peng, Qiang;Lv, Li-Min;Zhou, Qi-Wei;Du, Ying-Chun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1145-1151
    • /
    • 2010
  • The objective of this work was to analyze the relationship between ovine major histocompatibility complex (MHC) DRB1 gene polymorphism and genetic resistance to hydatidosis in Kazakh sheep. The Ovar (ovine MHC) class II DRB1 second exon was amplified by polymerase chain reaction (PCR) from DNA samples of 702 Kazakh sheep, including 302 sheep with hydatidosis and 400 health controls. PCR products were characterized by the restriction fragment length polymorphism (RFLP) technique using five restriction enzymes, i.e., MvaI, HaeIII, SacI, SacII and Hin1I, yielding 14 alleles and 28 genotypes. Comparing the frequency of genotypes in hydatidosis sheep with the control group, it was found that the genotype frequencies of MvaIbc, Hin1Iab, SacIIab, HaeIIIde, HaeIIIdf and HaeIIIdd in control sheep were significantly (p<0.01) higher than in hydatidosis sheep, indicating that a significant correlation existed between these genotypes and resistance to hydatidosis. Genotype frequencies of MvaIbb, SacIIaa, Hin1Ibb and HaeIIIef in sheep with hydatidosis were extremely significantly (p<0.01) higher than in the control group, and the genotype frequency of HaeIIIab was significantly higher (p<0.05), indicating that a marked correlation existed between these genotypes and susceptibility to hydatidosis. By way of analyzing haplotype with these resistant genotypes, the hydatidosis resistant haplotype MvaIbc-SacIIab-Hin1Iab of Kazakh sheep was screened out, and then verified through artificial hydatid infection in sheep. The results indicated that the infection rate of sheep with the resistant haplotype of hydatidosis was significantly lower (p<0.01) than without this resistant haplotype. It showed that the genic haplotype MvaIbc-SacIIab-Hin1Iab of Ovar-DRB1 exon 2 was the resistant haplotype of hydatidosis in Kazakh sheep.

Analysis of Interleukin-6 Gene Polymorphisms in Behcet’s Disease Using RFLP and DHPLC (RFLP와 DHPLC를 이용한 베체트병 환자에서 Interleukin-6 유전자 다형성의 분석)

  • Jang, Won-Cheol;Park, Sang-Beom;Nam, Yun-Hyeong;Lee, Jae-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.123-128
    • /
    • 2006
  • Behcet's disease (BD) is a systemic vasculitis characterized by recurrent oral and genital ulcers, and ocular inflammation, and which may involve the joints, skin, central nervous system and gastrointestinal tract. Although the exact pathogenesis for BD is not completely understood, it has been suggested that the disease is triggered in genetically susceptible individuals by environmental factors, such as microbial agents. It is noted that multiple genes, including MHC (major histocompatibility complex) and non-MHC genes, are implicated in the pathogenesis of BD. This study tries to determine whether IL-6 gene polymorphisms are associated with susceptibility to Behcet's disease in Koreans. Gene polymorphisms were typed by VNTR (variable number of tandem repeat), RFLP (restriction fragment length polymorphism), DHPLC (denaturing high performance liquid chromatography).There were no evidences for genetic association conferred by the IL-6prom polymorphism. However, significant differences in the IL-6vntr genotype and allele frequencies were found between patients with BD and controls. The IL-6vntr*C allele appeared to be an additional susceptibility gene to Korean BD. Further studies in other populations and gene are required to confirm these results.

Characterization of Interaction Between Porcine Reproductive and Respiratory Syndrome Virus and Porcine Dendritic Cells

  • Park, Jie-Yeun;Kim, Hyun-Soo;Seo, Sang-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1709-1716
    • /
    • 2008
  • The porcine reproductive and respiratory syndrome Virus (PRRSV) is an infectious disease that causes abortions and respiratory disorders in swine. In this study, the interaction between PRRSV and porcine dendritic cells generated from $CD14^{+}$ monocytes in the presence of GM-CSF and IL-4 was examined. As a result, it was shown that immature and mature dendritic cells can be productively infected with PRRSV. When the expression of surface MHC molecules on infected dendritic cells was determined, MHC classes I and II were found to be downregulated when compared with un infected dendritic cells. With the exception of the IL-4 and IFN-$\gamma$ cytokines, the induction of the IL-10, IL-12, and TNF-$\alpha$ cytokines all increased in dendritic cells infected with PRRSV. A mixed lymphocyte reaction showed that peripheral blood mononuclear cells cocultured with PRRSV-infected dendritic cells were less stimulated than peripheral blood mononuclear cells cocultured with dendritic cells treated with PBS, LPS, or UV-inactivated PRRSV. Therefore, these results suggest that PRRSV would appear to modulate the immune stimulatory function of porcine dendritic cells.

Development of Natural Killer Cells from Hematopoietic Stem Cells

  • Yoon, Suk Ran;Chung, Jin Woong;Choi, Inpyo
    • Molecules and Cells
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from $CD34^+$hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.