• Title/Summary/Keyword: Maize

Search Result 934, Processing Time 0.041 seconds

Changes of Growth and Yield of Late-planted Maize Cultivar for Double Cropping with Barley (보리이모작 만파 옥수수의 품종별 생육 및 수량변화)

  • Seo, Jong-Ho;Son, Beom-Young;Lee, Jae-Eun;Kwon, Young-Up;Jung, Gun-Ho;Back, Sung-Beom;Sung, Jang-Hoon;Kim, Wook-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.232-238
    • /
    • 2010
  • Maize double cropping with winter cereals is important for round-year production of forage or grain, and increase of self-sufficiency of upland grain crops such as maize and wheat. Changes of maize growth and yield for forage or grain according to late planting in June for double cropping with winter barely were investigated compared to proper planting in April for three years from 2007 to 2009. Forage and grain yields of maize planted in mid or late June decreased by 20~30% compared to proper planting in April, but total grain yields per year of double cropping increased by 30~40% compared to single cropped maize. Reduction of ear dry matter was less than that of stalk in late planting within maize plant part. Yield reduction by late planting was the least at Kwangpyeongok, which showed the highest grain yield, 850 kg $10a^{-1}$ in even though late planting in June. Meteorological condition during harvesting time of double cropped maize, which in late September (forage) and mid October (grain), were better than that of conventional maize harvesting time which in late August and mid September. It is thought that more researches for double cropped maize for higher grain production is needed in the future.

Effects of maize straw treated with various levels of CaO and moisture on composition, structure, and digestion by in vitro gas production

  • Shi, Mingjun;Ma, Zhanxia;Tian, Yujia;Zhang, Xuewei;Shan, Huiyong
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1940-1950
    • /
    • 2021
  • Objective: The objective of this study was to explore the effects of maize straw treated with calcium oxide (CaO) and various moisture, on the composition and molecular structure of the fiber, and gas production by fermentation in an in vitro rumen environment. Methods: The experiment used 4×3 Factorial treatment. Maize straws were treated with 4 concentrations of CaO (0%, 3%, 5%, and 7% of dry straw weight) and 3 moisture contents (40%, 50%, and 60%). Scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray fluorescence spectroscopy were employed to measure the surface texture, secondary molecular structure of carbohydrate, and calcium (Ca) content of the maize straw, respectively. The correlation of secondary molecular structures and fiber components of maize straw were analyzed by CORR procedure of SAS 9.2. In vitro rumen fermentation was performed for 6, 12, 24, 48, and 72 h to measure gas production. Results: Overall, the moisture factor had no obvious effect on the experimental results. Neutral detergent fiber (NDF), acid detergent fiber, acid detergent lignin, hemicellulose and cellulose contents decreased (p<0.05) with increasing concentrations of CaO treatment. Surface and secondary molecular structure of maize straw were affected by various CaO and moisture treatments. NDF had positive correlation (p<0.01) with Cell-H (H, height), Cell-A (A, area), CHO-2-H. Hemicellulose had positive correlation (p<0.01) with Lignin-H, Lignin-A, Cell-H, Cell-A. Ca content of maize straw increased as the concentration of CaO was increased (p<0.01). Gas production was highest in the group treated with 7% CaO. Conclusion: CaO can adhere to the surface of the maize straw, and then improve the digestibility of the maize straw in ruminants by modifying the structure of lignocellulose and facilitating the maize straw for microbial degradation.

Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

  • Ortiz, Carlos S.;Richards, Casey;Terry, Ashlee;Parra, Joselyn;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.203-211
    • /
    • 2015
  • Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field.

Potential of Using Maize Cobs in Pig Diets - A Review

  • Kanengoni, A.T.;Chimonyo, M.;Ndimba, B.K.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1669-1679
    • /
    • 2015
  • The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.

Isozymic Characteristics of Multiple-Ear and Tiller Maize Lines (다수다얼성 옥수수의 동위효소 특성)

  • ;Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 1987
  • This experiment was conducted to determine the isozymic differences between normal maize and maize inbreds of multiple ears and tillers (MET). Two maize inbreds Euisung, Iri and their hybrid having tillers and multiple ears were compared with normal maize. With usual electrophoresis using 6% polyacrylamide gel, peroxidase and esterase enzymes were studied. Matured leaf, culm, leaf sheath, root and young ear tissues showed different isozymic patterns between METs and normal maize in peroxidase. The Euisung inbred grown for 7 days under dark condition showed typical peroxidase. bands compared with checks in the tissues of coleoptile and stele. Better observation of isozymic bands was made during early part of maize growth. Parental inbreds showed more active and apparent band differences than their hybrids in esterase. Bands for esterase were also apparently different in the stele, coleoptile and young ear tissues of the METs and the checks. The maize lines infected with black streaked dwarf virus showed obvious differences in peroxidase and esterase isozymes.

  • PDF

Influence of Maize Cob Inclusion Level in Pig Diets on Growth Performance and Carcass Traits of Mukota × Large White F1 Crossbred Male Pigs

  • Chimonyo, M.;Kanengoni, A.T.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1724-1727
    • /
    • 2001
  • A trial was conducted to evaluate the growth performance and carcass characteristics of LW ${\times}$ Mukota $F_1$ crosses when fed diets containing graded levels of maize cob meal. Sixteen LW ${\times}$ Mukota $F_1$ crossbred pigs of approximately 4.5 months of age, were randomly allocated to four diets that contained 0, 100, 200 and 300 g maize cobs/kg, which corresponded to 276.4, 360.3, 402.9 and 523.5 g NDF/kg, respectively. The pigs were fed ad libitum for 14 weeks. The diets were formulated to contain similar levels of energy (ca. 9MJ ME/kg) and protein (ca.160 g CP/kg). Average daily feed intake (ADFI), daily gain (ADG) and feed conversion ratio (FCR) were monitored for 14 weeks. At slaughter, the cold dressed weight (CDM) and backfat thickness (BFT) were determined. There was no significant linear relationship (p>0.05) between level of cob inclusion and ADFI. The ADG decreased as level of maize cobs increased (p<0.001). The pigs that were on 300 g cobs/kg had the highest FCR (p<0.05) as compared to pigs on the other three diets. No differences (p>0.05) were observed in the CDM between pigs that were fed diets that had 0 and 100 g maize cobs/kg. In addition, pigs on 100 and 200 g cobs/kg diets had the same CDM (p>0.05). The diet that contained 300 g cobs/kg gave the lowest (p< 0.001) CDM. Both BFT parameters showed a decrease (p<0.05) as level of maize cobs increased. An increase in CDM was associated with an increase in BFT (p<0.001), with the correlation coefficient between K7.5 and CDM being 0.84 (p<0.001). It can, therefore, be concluded that crossbred pigs perform well on diets containing up to 200 g/kg maize cobs.

Temporal and Spatial Distribution of Growing Degree Days for Maize in Northeast District of China (중국 동북지역에서 옥수수 유효적산온도의 시공간적 분포)

  • Jung, Myung-Pyo;Park, Hye-Jin;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.302-305
    • /
    • 2016
  • BACKGROUND: The northeast district of China, especially Liaoning province, Jilin province, and Heilongjiang province, is one of the largest agricultural production regions in China. These regions play a significant role in ensuring food security. Accumulated temperature such as growing degree days (GDD) is an important environmental factor for plant growth and yield. Therefore, in this study, temporal and spatial distribution of GDD for maize was examined as a basis to estimate the growth and yield of maize in these regions. METHODS AND RESULTS: Meteorological date produced by NASA (MERRA-2) was used to estimate GDD of maize at this study sites. The GDD was calculated from sowing (May 1) to harvesting (Sep. 30). The average GDD of this region between 2010 and 2015 was $1323.0^{\circ}C$ day (595.3-1838.9). The spatial distribution of GDD showed a similar pattern during the different years surveyed. Double cropping for maize could be in only Liaoning province, northwestern Jilin province, and western and eastern Heilongjiang province where the GDD was over $1600^{\circ}C$day. However, The GDD in eastern Heilongjiang province was varied by year. CONCLUSION: The GDD of maize in northeast district of China was varied spatially, but similar among recent six years at the same region. This result can be used to predict growth stage and yield of maize at these regions.

Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize

  • Song, Kitae;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Kim, Jae Yoon;Lee, Sang-Kyu;Lee, Byung-Moo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.354-362
    • /
    • 2018
  • Maize has high food and industrial value, whereas has difficulties in research because of their complex and huge size genome. Nested association mapping (NAM) was constructed to better understand maize genetics. However, most studies were conducted using the reference genome B73, and only a few studies were conducted on tropical maize. Ki3, one of the founder lines of the NAM population, is a tropical maize. We analyzed the genetic characteristics of Ki3 by using RNA sequencing and bioinformatics tools for various genetic studies. As results, a total of 30,526 genes were expressed, and expression profile were constructed. A total of 1,558 genes were differentially expressed in response to drought stress, and 513 contigs of them come from de novo assemblies. In addition, high-density polymorphisms including 464,930 single nucleotide polymorphisms (SNPs), 21,872 multiple nucleotide polymorphisms (MNPs) and 93,313 insertions and deletions (InDels) were found compared to reference genome. Among them, 15.0 % of polymorphisms (87,838) were passed non-synonymous test which could alter amino acid sequences. The variants have 66,550 SNPs, 5,853 MNPs, and 14,801 InDels, also proportion of homozygous type was higher than heterozygous. These variants were found in a total of 15,643 genes. Of these genes, 637 genes were found as differentially expressed genes (DEGs) under drought stress. Our results provide a genome-wide analysis of differentially expressed genes and information of variants on expressed genes of tropical maize under drought stress. Further characterization of these changes in genetic regulation and genetic traits will be of great value for improvement of maize genetics.

Effect of Sowing Date and Planting Density on Growth, Yield and Anthocyanin Content of Purple Corn 'sakso 1'

  • Hee Yeon Kim;Jae-Keun Choi;Si-Hwan Ryu;Moon-jong Kim;Jung Heon Han;Seung Hyun Wang;Ki Sun Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.55-55
    • /
    • 2022
  • Purple com Saekso 1 was developed by Maize Research Institute (Hongcheon, Gangwon, Korea) and registered in 2011. Saekso 1 is a anthocyanin-rich hybrid variety that is yellow grain, purple husk and cob. Purple husk and cob of Saekso 1 is as a resource for the bioactive material by health food. In order to investigate optimum sowing date and planting density of Saekso 1. Agronomic characteristics were compared by sowing times April 25, May 15 and June 5. Husk dry weight were 68,72 and 70kg·10a-1, respectively. Cob dry weight were 90, 92 and 92kg·10a-1, respectively. Content of cyanidin-3-glucoside in husk were 0.56, 0.62 and 0.56% and in cob were 0.19, 0.14 and 0.17%. Therefore, the sowing time to increase husk and cob weight and content of cyanidin-3-glucoside is appropriate for planting in mid-May. The number of plants in planting density trial was 9,400, 7,000, 5,700 and 4,700 plants in 10a area. Plant height at each trial were 249, 250, 246 and 248cm, respectively. Husk dry weight were 76, 67 and 63 and 60kg·10a-1, respectively. Cob dry weight were 112, 92, 87 and 81kg·10a-1, respectively. Content of cyanidin-3-glucoside in husk were 0.70, 0.71, 0.71 and 0.75% and in cob were 0.21, 0.28, 0.26 and 0.20%. Therefore, appropriate sowing time was in mid-May and planting density was 5,700~7,000 plants·10a-1 in order to increase the yield and content of cyanidin-3-glucoside of purple com in South Korea.

  • PDF

Prevalence and Transmission of Seed-Borne Fungi of Maize Grown in a Farm of Korea

  • Basak, A.B.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 2002
  • Seed-borne fungi of some maize cultivars/lines grown during the months from May to September of 2001, collected from Dongguk University farm, Go Young City, IL Sang Gu, Korea were detected by blotter method. In all six fungi namely Alternaria alternata(Fr.) Keissler, Aspergillus niger Van Tiegh, Fusarium moniliforme Sheldon, Fusarium sp., Penicillium sp. and Ustilago zeae Unger. were found to associated with maize seeds. Prevalence of seed-borne fungi also varied. The highest percentages of seed-borne fungi were recorded with Fusarium moniliforme and the lowest in Penicillium sp. Transmission of all seed-borne pathogens from seeds to seedlings were also detected by test tube seedling symptom test. Among the seed-borne fungi, Alternaria alternata, Fusarium moniliforme and Fusarium sp. produced distinct seed rot and seedling infection symptoms. All the transmitted seed-borne fungi might be caused primary source of infection to the maize crop.