• Title, Summary, Keyword: Maize

Search Result 834, Processing Time 0.044 seconds

Influence of Maize Cob Inclusion Level in Pig Diets on Growth Performance and Carcass Traits of Mukota × Large White F1 Crossbred Male Pigs

  • Chimonyo, M.;Kanengoni, A.T.;Dzama, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.12
    • /
    • pp.1724-1727
    • /
    • 2001
  • A trial was conducted to evaluate the growth performance and carcass characteristics of LW ${\times}$ Mukota $F_1$ crosses when fed diets containing graded levels of maize cob meal. Sixteen LW ${\times}$ Mukota $F_1$ crossbred pigs of approximately 4.5 months of age, were randomly allocated to four diets that contained 0, 100, 200 and 300 g maize cobs/kg, which corresponded to 276.4, 360.3, 402.9 and 523.5 g NDF/kg, respectively. The pigs were fed ad libitum for 14 weeks. The diets were formulated to contain similar levels of energy (ca. 9MJ ME/kg) and protein (ca.160 g CP/kg). Average daily feed intake (ADFI), daily gain (ADG) and feed conversion ratio (FCR) were monitored for 14 weeks. At slaughter, the cold dressed weight (CDM) and backfat thickness (BFT) were determined. There was no significant linear relationship (p>0.05) between level of cob inclusion and ADFI. The ADG decreased as level of maize cobs increased (p<0.001). The pigs that were on 300 g cobs/kg had the highest FCR (p<0.05) as compared to pigs on the other three diets. No differences (p>0.05) were observed in the CDM between pigs that were fed diets that had 0 and 100 g maize cobs/kg. In addition, pigs on 100 and 200 g cobs/kg diets had the same CDM (p>0.05). The diet that contained 300 g cobs/kg gave the lowest (p< 0.001) CDM. Both BFT parameters showed a decrease (p<0.05) as level of maize cobs increased. An increase in CDM was associated with an increase in BFT (p<0.001), with the correlation coefficient between K7.5 and CDM being 0.84 (p<0.001). It can, therefore, be concluded that crossbred pigs perform well on diets containing up to 200 g/kg maize cobs.

Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas

  • Ortiz, Carlos S.;Richards, Casey;Terry, Ashlee;Parra, Joselyn;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.203-211
    • /
    • 2015
  • Maize is the dominant cereal crop produced in the US. One of the main fungal pathogens of maize is Fusarium verticillioides, the causative agent of ear and stalk rots. Significantly, the fungus produces a group of mycotoxins - fumonisins - on infested kernels, which have been linked to various illnesses in humans and animals. Nonetheless, durable resistance against F. verticillioides in maize is not currently available. In Texas, over 2.1 million acres of maize are vulnerable to fumonisin contamination, but understanding of the distribution of toxigenic F. verticillioides in maize-producing areas is currently lacking. Our goal was to investigate the genetic variability of F. verticillioides in Texas with an emphasis on fumonisin trait and geographical distribution. A total of 164 F. verticillioides cultures were isolated from 65 maize-producing counties. DNA from each isolate was extracted and analyzed by PCR for the presence of FUM1- a key fumonisin biosynthesis gene - and mating type genes. Results showed that all isolates are in fact F. verticillioides capable of producing fumonisins with a 1:1 mating-type gene ratio in the population. To further study the genetic diversity of the population, isolates were analyzed using RAPD fingerprinting. Polymorphic markers were identified and the analysis showed no clear correlation between the RAPD profile of the isolates and their corresponding geographical origin. Our data suggest the toxigenic F. verticillioides population in Texas is widely distributed wherever maize is grown. We also hypothesize that the population is fluid, with active movement and genetic recombination occurring in the field.

Isozymic Characteristics of Multiple-Ear and Tiller Maize Lines (다수다얼성 옥수수의 동위효소 특성)

  • ;Bong-Ho Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 1987
  • This experiment was conducted to determine the isozymic differences between normal maize and maize inbreds of multiple ears and tillers (MET). Two maize inbreds Euisung, Iri and their hybrid having tillers and multiple ears were compared with normal maize. With usual electrophoresis using 6% polyacrylamide gel, peroxidase and esterase enzymes were studied. Matured leaf, culm, leaf sheath, root and young ear tissues showed different isozymic patterns between METs and normal maize in peroxidase. The Euisung inbred grown for 7 days under dark condition showed typical peroxidase. bands compared with checks in the tissues of coleoptile and stele. Better observation of isozymic bands was made during early part of maize growth. Parental inbreds showed more active and apparent band differences than their hybrids in esterase. Bands for esterase were also apparently different in the stele, coleoptile and young ear tissues of the METs and the checks. The maize lines infected with black streaked dwarf virus showed obvious differences in peroxidase and esterase isozymes.

  • PDF

Temporal and Spatial Distribution of Growing Degree Days for Maize in Northeast District of China (중국 동북지역에서 옥수수 유효적산온도의 시공간적 분포)

  • Jung, Myung-Pyo;Park, Hye-Jin;Shim, Kyo-Moon;Ahn, Joong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.302-305
    • /
    • 2016
  • BACKGROUND: The northeast district of China, especially Liaoning province, Jilin province, and Heilongjiang province, is one of the largest agricultural production regions in China. These regions play a significant role in ensuring food security. Accumulated temperature such as growing degree days (GDD) is an important environmental factor for plant growth and yield. Therefore, in this study, temporal and spatial distribution of GDD for maize was examined as a basis to estimate the growth and yield of maize in these regions. METHODS AND RESULTS: Meteorological date produced by NASA (MERRA-2) was used to estimate GDD of maize at this study sites. The GDD was calculated from sowing (May 1) to harvesting (Sep. 30). The average GDD of this region between 2010 and 2015 was $1323.0^{\circ}C$ day (595.3-1838.9). The spatial distribution of GDD showed a similar pattern during the different years surveyed. Double cropping for maize could be in only Liaoning province, northwestern Jilin province, and western and eastern Heilongjiang province where the GDD was over $1600^{\circ}C$day. However, The GDD in eastern Heilongjiang province was varied by year. CONCLUSION: The GDD of maize in northeast district of China was varied spatially, but similar among recent six years at the same region. This result can be used to predict growth stage and yield of maize at these regions.

Gene Expression Analysis and Polymorphism Discovery to Investigate Drought Responsive System in Tropical Maize

  • Song, Kitae;Kim, Hyo Chul;Kim, Kyung-Hee;Moon, Jun-Cheol;Kim, Jae Yoon;Lee, Sang-Kyu;Lee, Byung-Moo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.354-362
    • /
    • 2018
  • Maize has high food and industrial value, whereas has difficulties in research because of their complex and huge size genome. Nested association mapping (NAM) was constructed to better understand maize genetics. However, most studies were conducted using the reference genome B73, and only a few studies were conducted on tropical maize. Ki3, one of the founder lines of the NAM population, is a tropical maize. We analyzed the genetic characteristics of Ki3 by using RNA sequencing and bioinformatics tools for various genetic studies. As results, a total of 30,526 genes were expressed, and expression profile were constructed. A total of 1,558 genes were differentially expressed in response to drought stress, and 513 contigs of them come from de novo assemblies. In addition, high-density polymorphisms including 464,930 single nucleotide polymorphisms (SNPs), 21,872 multiple nucleotide polymorphisms (MNPs) and 93,313 insertions and deletions (InDels) were found compared to reference genome. Among them, 15.0 % of polymorphisms (87,838) were passed non-synonymous test which could alter amino acid sequences. The variants have 66,550 SNPs, 5,853 MNPs, and 14,801 InDels, also proportion of homozygous type was higher than heterozygous. These variants were found in a total of 15,643 genes. Of these genes, 637 genes were found as differentially expressed genes (DEGs) under drought stress. Our results provide a genome-wide analysis of differentially expressed genes and information of variants on expressed genes of tropical maize under drought stress. Further characterization of these changes in genetic regulation and genetic traits will be of great value for improvement of maize genetics.

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

  • Dastjerdi, Raana;Karlovsky, Petr
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.334-342
    • /
    • 2015
  • Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) differences in systemic colonization were detected between the wild type strains and mutants not producing fumonisins. F. verticillioides was not detected in any of the non-inoculated control plants. The fungus grew from roots to the first two internodes/leaves of maize, rice and beet regardless of fumonisin production. The systemic growth of F. verticillioides in sorghum was limited. The results showed that fumonisin production was not required for the infection of roots of maize, rice and beet by F. verticillioides.

Regulation of Fumonisin Biosynthesis in Fusarium verticillioides-Maize System

  • Sagaram Uma Shankar;Kolomiets Mike;Shim Won-Bo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • Fumonisins are a group of mycotoxins produced by a pathogen Fusarium verticillioides in infected maize kernels. Consumption of fumonisin-contaminated maize has been implicated in a number of animal and human illnesses, including esophageal cancer and neural tube defects. Since the initial discovery, chemistry, toxicology, and biology of fumonisins as well as the maize-Fusarium pathosystem have been extensively studied. Furthermore, in the past decade, significant progress has been made in terms of understanding the molecular biology of toxin biosynthetic genes. However, there is a critical gap in our understanding of the regulatory mechanisms involved in fumonisin biosynthesis. Here, we review and discuss our current knowledge about the molecular mechanisms by which fumonisin biosynthesis is regulated in F. verticillioides. In addition, we discuss the impact of maize kernel environment, particularly sugar and lipid molecules, on fumonisin biosynthesis.

Detection of Eight Different Events of Genetically Modified Maize by Multiplex PCR Method

  • Kim, Jae-Hwan;Song, Hee-Sung;Heo, Mun-Seok;Lee, Woo-Young;Lee, Soon-Ho;Park, Sun-Hee;Park, Hye-Kyung;Kim, Myung-Chul;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.148-151
    • /
    • 2006
  • Multiplex PCR was performed to simultaneously detect eight different events of genetically modified (GM) maize. Specific primers were constructed from GA21, T25, TC1507, Mon810, Mon863, Event176, Bt11, and NK603 events of GM maize. Using this PCR method, specific GM maize was monitored in commercialized foods and feed.

Prevalence and Transmission of Seed-Borne Fungi of Maize Grown in a Farm of Korea

  • Basak, A.B.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.30 no.1
    • /
    • pp.47-50
    • /
    • 2002
  • Seed-borne fungi of some maize cultivars/lines grown during the months from May to September of 2001, collected from Dongguk University farm, Go Young City, IL Sang Gu, Korea were detected by blotter method. In all six fungi namely Alternaria alternata(Fr.) Keissler, Aspergillus niger Van Tiegh, Fusarium moniliforme Sheldon, Fusarium sp., Penicillium sp. and Ustilago zeae Unger. were found to associated with maize seeds. Prevalence of seed-borne fungi also varied. The highest percentages of seed-borne fungi were recorded with Fusarium moniliforme and the lowest in Penicillium sp. Transmission of all seed-borne pathogens from seeds to seedlings were also detected by test tube seedling symptom test. Among the seed-borne fungi, Alternaria alternata, Fusarium moniliforme and Fusarium sp. produced distinct seed rot and seedling infection symptoms. All the transmitted seed-borne fungi might be caused primary source of infection to the maize crop.

The Stable Production of Organic Seed to Distribute Certified Seed of Waxy Corn Hybrid

  • Goh, Byeong-Dae;Park, Jong-Yeol;Jang, Eun-Ha;Park, Ki-Jin;Yoon, Byeong-Sung;Jang, Jin-Sun
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.6-8
    • /
    • 2011
  • In order to produce the organic foods in accord with international standard, organic seeds should be used in organic farming. This study was conducted to establish the stable production of organic seed of waxy com by examining the growing characteristics, seed yield, and the economy for seed production by organic farming. The optimal sowing timing for organic seed production of waxy com hybrid was within 10 days of the $1^{st}$ of May with yield of 88~90% of conventional seed production. The optimal planting density was 41,600 plants/ha ($80{\times}30$ cm) for organic seed production of waxy com. The weight of 100 seeds and seed productivity increased at the planting ratio of 2:1 mother plant:male plant. Growth and seed production were improved by removing male plant at 7~10 days after silking. Organic fertilizer (mixed oil cake) was applied at a rate of 4~6 Mg/ha before sowing. Black plastic mulching was used for weed control. In addition, sex pheromone trap and bio-control agents were used for safe pest control and low labour cost.