• Title/Summary/Keyword: Maize

Search Result 934, Processing Time 0.032 seconds

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

Effect of Stage of Growth and Cultivar on Chemical Composition of Whole Maize Plant and Its Morphological Fractions

  • Firdous, R.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.3
    • /
    • pp.366-370
    • /
    • 1999
  • Samples of whole plant, leaf and stem of Akbar, Neelum, UM-81 and lZ-31 cultivars of maize fodder harvested up to 14 weeks at different growth stages were drawn and analysed for dry matter contents and various cell wall constituents such as NDF, ADF, hemicellulose, cellulose, lignin, cutin and silica. The dry matter contents of whole maize plant, leaf and stem increased significantly (p<0.01) with advancing plant age. Maximum dry matter was found in the leaf fraction of the plant. The cell wall components continued to increase significantly (p<0.001) in whole maize plant and its morphological fractions as the age advanced. Maximum values for NDF, ADF, cellulose and lignin were observed in stem followed by whole plant and leaf, whereas hemicellulose, cutin and silica contents were higher in leaf fraction of the plant. The cultivars were observed to have some effects on chemical composition of all plant fraction. The results indicated that maturity had a much greater effect on the concentration of all the structural components than did the cultivars. It was concluded that maize fodder should be cut preferably between 8th to 9th week of age (flowering stage) to obtain more nutritious and digestible feed for livestock. Among the maize cultivars, Neelum proved to be the best, due to its higher dry matter contents and lower lignin concentration.

Effect of Stage of Maturity and Cultivars on the Digestibility of Whole Maize Plant and its Morphological Fractions

  • Firdous, R.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1228-1233
    • /
    • 1999
  • A study was conducted on four maize cultivars to determine the dry matter and fibre digestibility as influenced by advancing plant age. Samples of maize cultivars Akbar, Neelum, UM-81 and IZ-31 were harvested at weekly intervals/ growth stages. The samples of morphological fractions such as leaf and stem were also collected at various growth stages. Whole mixed fodder and different fractions of maize plant were analysed for their chemical composition and in vitro digestibility. The results showed that in vitro dry matter digestibility (IVDMD) of whole maize plant, leaf and stem decreased significantly with advancing stage of maturity. Digestibility of NDF, ADF, hemicellulose and cellulose decreased significantly in all plant parts with advancing plant age/growth stages. Maximum values for the digestibility of dry matter and various cell wall constituents were observed in leaf, followed by whole plant and stem fractions. Cultivars were observed to have significant effect of IVDMD and digestibility of NDF, ADF and cellulose in all plant fractions. The results indicated that digestibility of maize fodder was affected by stage of maturity and cultivars. However, maturity had a greater effect on digestibility in all plant fractions than did cultivars. Dry matter contents were found to be significantly and negatively correlated with IVDMD of whole plant and its leaf and stem fractions. Based on correlations, regression equations were computed to predict IVDMD.

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

An efficient microscopic technique for aleurone observation with an entire kernel cross-section in maize (Zea mays L.)

  • Jae-Hong Kim;Ji Won Kim;Gibum Yi
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.645-652
    • /
    • 2023
  • The aleurone layer in maize is crucial as it contains essential nutrients such as minerals, vitamins, and high-quality proteins. While most of the maize varieties are known to possess a single aleurone layer, several multi-aleurone layer mutants and landraces have been suggested for hierarchical genetic control of aleurone development. Conventional microscopy analysis often involves using immature seeds or sampling only a portion of the kernel sample, and whole kernel section analysis using a microtome is technically difficult and time-consuming. Additionally, the larger size of maize kernels posed challenges for comprehensive cross-sectional analysis compared to other cereal crops. Consequently, this study aimed to develop an efficient method to comprehensively understand the aleurone layer characteristics of the entire cross-section in maize. Through observations of diverse maize genetic resources, we confirmed irregular aleurone layer patterns in those with multiple aleurone layers, and we discovered a landrace having multiple aleurone layers. By selectively identifying genetic resources with multiple aleurone layers, this method may contribute to efficient breeding processes in maize.

Effects of stale maize on growth performance, immunity, intestinal morphology and antioxidant capacity in broilers

  • Liu, J.B.;Yan, H.L.;Zhang, Y.;Hu, Y.D.;Zhang, H.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.605-614
    • /
    • 2020
  • Objective: This study was conducted to determine the effects of stale maize on growth performance, immunity, intestinal morphology, and antioxidant capacity in broilers. Methods: A total of 800 one-day-old male Arbor Acres broilers (45.4±0.5 g) were blocked based on body weight, and then allocated randomly to 2 treatments with 20 cages per treatment and 20 broilers per cage in this 6-week experiment. Dietary treatments included a basal diet and diets with 100% of control maize replaced by stale maize. Results: The content of fat acidity value was higher (p<0.05) while the starch, activities of catalase and peroxidase were lower (p<0.05) than the control maize. Feeding stale maize diets reduced (p<0.05) average daily feed intake (ADFI) throughout the experiment, feed conversion ratio (FCR) during d 0 to 21 and the whole experiment as well as relative weight of liver, spleen, bursa of Fabricius and thymus (p<0.05) on d 21. Feeding stale maize diets decreased jejunum villus height (VH) and VH/crypt depth (CD) (p<0.05) on d 21 and 42 as well as ileum VH/CD on d 42. The levels of immunoglobulin G, acid α-naphthylacetate esterase positive ratios and lymphocyte proliferation on d 21 and 42 as well as lysozyme activity and avian influenza antibody H5N1 titer on d 21 decreased (p<0.05) by the stale maize. Feeding stale maize diets reduced (p<0.05) serum interferon-γ, tumor necrosis factor-α, interleukin-2 on d 21 and interleukin-6 on d 21 and 42. Broilers fed stale maize diets had lower levels of (p<0.05) total antioxidative capacity on d 42, superoxide dismutase and glutathione peroxidase on d 21 and 42, but higher (p<0.05) levels of malondialdehyde on d 21 and 42. Conclusion: Feeding 100% stale maize decreased ADFI and FCR, caused adverse effects on immunity and antioxidant function and altered intestinal morphology in broilers.

Researching the Occurrence Potential of Autoite for Living Modified OrganismMaize Spill (유전자변형생물체 옥수수의 자생개체 발생가능성 조사)

  • Eom, Gyu-Hyeon;Jang, Yoon-Hee;Du, Xiao-Xuan;Kim, Eun-Gyeong;Park, Jae-Ryoung;Ryu, Taehun;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.641-646
    • /
    • 2022
  • There are concerns about the environmental release of living modified organism (LMO) maize created to increase yields. In fact, there are cases in which LMO crops for feed have been leaked in Korea to form autoite colonies, and concerns about LMO spill are intensifying. In this study, the possibility of environmental outflow and occurrence of native organisms was analyzed using maize feed and seeds distributed in Korea. In the evaluation of the possibility of spontaneous occurrence of maize in the event of an unintentional release of maize feed made by crushing maize, the incidence rate of maize was 0.01%, which was extremely low compared to the germination rate of maize seeds. A survey of the dormant rate of maize showed that all maize seeds collected every month were dead. In the germination rate test by temperature using Daehak wax corn and Kwangpyeongok, high germination rates were found at 20℃ and 30℃, and relatively low germination rates were found at 10℃ and 40℃. In addition, all germination tests showed a higher germination rate Daehak wax corn than Kwangpyeongok. The difference between domestic and overseas cultivation maize was confirmed through a survey on the agricultural properties of three varieties of maize. The data obtained through this experiment could be the basis for the evaluation of the weediness potential of environmental risk assessment and technology to suppress the occurrence of autoite in preparation for future LMO spills.

Relationships between Structural Features and Biological Activities of HC-toxin

  • Kim, Shin-Duk
    • BMB Reports
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 1995
  • In order to figure out the relationships between structural features and biological activity of the host-specific HC-toxin in maize, structurally related cyclic tetrapeptides, chlamydocin and CYL-2 were isolated, and their biological activities in maize were examined. Biological activities of preparations were determined by root growth inhibition and electrolyte leakage bioassays. Chlamydocin and CYL-2 showed toxicities to maize. However, the toxicities of these compounds were non-specific. Thus, the precise peptide ring structure of HC-toxin apparently does not play an important role in toxicity, while resistance of maize to HC-toxin is based on a precise ring conformation.

  • PDF

Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics

  • Von, Nguyen Tien;St. Louis, David G.;Orr, Adam I.;Rude, Brian J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • Steers with ad libitum access to rice straw were assigned to four diets to evaluate the effects of maize or soybean hull supplementation on intake, in vivo digestibility, ruminal pH, VFA, ammonia-nitrogen ($NH_3-N$) and in situ ruminal disappearance of feed nutrients by cattle consuming rice straw. Supplement treatments were: no supplement (RS); soybean meal at 0.127% BW (SBM); cracked maize at 0.415% BW plus 0.044% BW soybean meal (MAIZE); or soybean hulls at 0.415% BW plus 0.044% BW soybean meal (HULLS). The MAIZE and HULLS diets were formulated to provide approximately 4 MJ of $NE_m$ per kg of diet. Rice straw DMI was not affected (p = 0.34) by supplement. Apparent dry matter (DM) digestibility was greater (p<0.001) for MAIZE and HULLS (56.6 and 60.0%, respectively) than for steers consuming SBM or RS (51.8 and 44.4%, respectively). Apparent NDF digestibility was greater (p<0.0004) for HULLS than MAIZE (61.7 vs. 58.0%, respectively) and apparent ADF digestibility was greater (p<0.0008) for HULLS than MAIZE (61.1 vs. 49.2%, respectively). There was no difference in apparent hemicellulose digestibility (p = 0.43). Analysis of ruminal fluid collected 0, 2, 4, 6, and 8 h post-feeding revealed ammonia-nitrogen was greatest (p<0.05) for steers on SBM and HULLS diets at 2 h (24.08 and 22.57 mg/dl, respectively) and total volatile fatty acids was greatest (p<0.05) for HULLS at 4 h (230 mM/L). In situ disappearance, measured at 0, 2, 4, 6, 8, 16 and 24 h, indicated that SBM, MAIZE and HULLS tended to enhance the digestibility of DM and fiber components of rice straw. In situ disappearance of rice straw DM was greatest for SBM and/or HULLS from 4 to 24 h (p = 0.03). Rice straw NDF and ADF disappearance was enhanced by supplementation from 16 to 24 h (p<0.02). Rice straw DM, NDF and ADF disappearances at 24 h were similar for MAIZE and HULLS treatments. When feeding cattle rice straw diets, energy and protein-based supplements are essential. This study showed that fiber-based supplements are just as, if not more, effective as starch-based supplements in rice straw utilization. This study shows that soybean hulls, in spite of their high fiber content, are as efficient as maize for supplementing rice straw primarily because fiber in soybean hulls is highly digestible as shown by in vivo digestibility and in situ disappearance.