• 제목/요약/키워드: Maize

검색결과 932건 처리시간 0.036초

Level of Knowledge and Utilization of Fortified Maize Flour by Primary Food Shoppers in Mathare, Nairobi County, Kenya

  • SAMIRA, Hussein;NJOGU, Eunice;MAKWORO, Drusilla
    • 식품보건융합연구
    • /
    • 제6권2호
    • /
    • pp.1-8
    • /
    • 2020
  • Micronutrient malnutrition severely affects development and functioning of the body leading to increased morbidity and mortality. The study adopted a cross-sectional research design; cluster sampling was used to target 318 households. The significance level was P < 0.05, the mean age of primary food shoppers was 33 years and the average income was 3,000-5,000 Kenya shillings. Slightly above half, 55% of the primary food shoppers knew about fortification but only 25% understood its meaning. Fortified maize flour was consumed by < 80% of primary food shoppers however utilization frequency was low. In conclusion factors that were significantly associated with utilization of fortified maize flour included; knowledge on fortified maize flour (p=0.00), household size (p=0.005), preference of fortified maize flour (p=0.000) and level of fortification knowledge (p=0.002). Availability and price were ranked as the most important factors that influence utilization of fortified maize flour at 58% and 55% contrary nutritional value was ranked least important at 37%. The ministry of health and concerned millers should make more emphasis on creating and sustaining awareness more so a steady supply and affordable prices should be ensured by millers so that more primary food shoppers can be able to utilize the fortified maize flour.

The comparative gene expression concern to the seed pigmentation in maize (Zea mays L.)

  • Sa, Kyu Jin;Choi, Ik-Young;Lee, Ju Kyong
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.29.1-29.11
    • /
    • 2020
  • Maize seed pigmentation is one of the important issue to develop maize seed breeding. The differently gene expression was characterized and compared for three inbred lines, such as the pigment accumulated seed (CM22) and non-pigmented seed (CM5 and CM19) at 10 days after pollination. We obtained a total of 63,870, 82,496, and 54,555 contigs by de novo assembly to identify gene expression in the CM22, CM5, and CM19, respectably. In differentially expressed gene analysis, it was revealed that 7,044 genes were differentially expressed by at least two-fold, with 4,067 upregulated in colored maize inbred lines and 2,977 upregulated in colorless maize inbred lines. Of them,18 genes were included to the anthocyanin biosynthesis pathways, while 15 genes were upregulated in both CM22/5 and CM22/19. Additionally, 37 genes were detected in the metabolic pathway concern to the seed pigmentation by BINs analysis using MAPMAN software. Finally, these differently expressed genes may aid in the research on seed pigmentation in maize breeding programs.

Interaction between different nitrogen fertilizer levels and maize-bean intercropping patterns

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.269-277
    • /
    • 2012
  • In order to investigate the effects of different maize-bean intercropping patterns, and of nitrogen fertilizers on morphological and yield related traits, a factorial study based on Randomized Complete Block Design (RCBD) was performed during the 2010 and 2011 growing seasons in a research filed of Shiraz University, Iran. The first factor of the study was seven different ratios of Maize-Bean intercropping system (Maize sole cropping, Bean sole cropping, and intercropping of maize/bean at the ratios of 1/3, 1/1, 2/3, 3/2 and 3/1) and the second factor was three nitrogen (N) fertilizer application levels (0, 100 and 200 kg N/ha). Results showed that with respect to increasing the levels of N fertilizer, the yield of bean sole cropping decreased but the yield of maize sole cropping increased. On the other hand, in intercropping systems with N fertilizer application, the yield of both crops increased. Results of total land equivalent ratio (LER) for both crops showed that the highest LER value under both 100 and 200 kg N/ha application was that of M1B1 (1 seed of maize after 1 seed of bean, consecutively, on a row with same distance). Under no N fertilizer application the highest LER value was that of M2B3 (2 seeds of maize after 3 seeds of bean, consecutively, on a row with same distance). Overall, it can be concluded that M1B1 is the best intercropping pattern in maize-bean intercropping systems and that the application of N fertilizer can be effective within practical settings of intercropping agriculture, resulting in higher yields.

Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws

  • Li, Xue;Liu, Yan-Hua;Zhang, Xin;Ge, Chang-Ming;Piao, Ren-Zhe;Wang, Wei-Dong;Cui, Zong-Jun;Zhao, Hong-Yan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.524-534
    • /
    • 2017
  • The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at $35^{\circ}C$ to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and $3,628.3ml/g{\cdot}VS$, respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and $904.17ml/g{\cdot}VS$, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and $637.4ml/g{\cdot}VS$, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.

The Intake and Palatability of Four Different Types of Napier Grass (Pennisetum purpureum) Silage Fed to Sheep

  • Manyawu, G.J.;Sibanda, S.;Chakoma, I.C.;Mutisi, C.;Ndiweni, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.823-829
    • /
    • 2003
  • Four different types of silage from new cultivars of Napier grass (Pennisetum purpureum), cv. NG 1 and NG 2, were fed to eight wethers in order to evaluate their preference and intake by sheep. The silages were prepared from direct-cut NG 1 herbage; pre-wilted NG 1 herbage; NG 1 herbage with maize meal (5% inclusion) and NG 2 herbage with maize meal (5% inclusion). All silages were palatable to sheep. Maize-treated silage had high quality fermentation, characterized by high Fleig scores and low pH, volatile fatty acids (VFA) and ammoniacal nitrogen contents. The pH, Fleig score, in vitro digestible organic matter (IVDOMD) and ammoniacal-N contents for maize-treated cv. NG 1 silage were 3.7, 78, $540g\;kg^{-1}$ dry matter (DM ) and $0.18g\;kg^{-1}$ DM whereas, in maize-treated cv. NG 2 they were 3.6, 59, $^458g\;kg{-1}$ DM and $0.18g\;kg^-1$ DM, respectively. The superior quality of maize-treated silages made them more preferable to sheep. Among the maize-fortified silages, palatability and intake were significantly (p<0.001) greater with cv. NG 1. Although direct-cut silage had better fermentation quality compared to wilted silage, wilted silage was significantly (p<0.001) more preferable to sheep. However, there were no significant differences (p<0.05) in the levels of preference and intake of wilted silage compared to maize-treated cv. NG 2 silage, even though the latter tended to be more palatable. There were indications that high pH (4.6 vs 3.5) and IVDOMD content (476 vs $457g\;kg^{-1}%$ DM) of wilted silage contributed to higher intake, compared to direct-cut silage. It was generally concluded that pre-wilting and treatment of Napier grass with maize meal at ensiling enhances intake and palatability.

Nutrient Uptake and Productivity as Affected by Nitrogen and Potassium Application Levels in Maize/Sweet Potato Intercropping System

  • Haque, M.Moynul;Hamid, A.;Bhuiyan, N.I.
    • 한국작물학회지
    • /
    • 제46권1호
    • /
    • pp.1-5
    • /
    • 2001
  • Field experiment was conducted during 1993-94 season to determine the pattern of nutrient uptake and productivity of maize/sweet potato intercropping system. Four levels of nitrogen (0, 50, 100 and 150kg N ${ha}_{-1}$) and four levels of potassium (0, 40, 80 and 120kg $K_2$O ${ha}_{-1}$) formed treatment variables. Plants were sampled periodically to determine dry matter and tissue concentrations of N and K in the individual plant components of intercropped maize and sweet potato. Nitrogen and potassium fertilizer did not interact significantly to nutrient uptake by any plant parts of intercropped maize and sweet potato. But application of N fertilizer independently enhanced N uptake in all the plant parts of maize and sweet potato. The uptake of N in leaf, leaf sheath, stem, husk, and cob of maize increased upto 90 days after planting (DAP) but grain continued to accumulate N till its maturity. Sweet potato exhibited a wide variation in N uptake pattern. Sweet potato leaf shared the maximum uptake of N at 50 DAP which rapidly increased at 70 DAP and then declined. Declination of N uptake by petiole and stem were observed after 120 DAP whereas N uptake by tuber increased slowly upto 90 DAP and then rapidly till harvest. Rate of applied K had very little effect on the uptake patterns in different components of intercropped maize. Pattern of K uptake by leaf, petiole and stem of sweet potato showed almost similar trend to N uptake. But uptake of K by tuber increased almost linearly with the K application. Pattern of N and K uptake by grain and tuber paralleled the grain yield of maize and sweet potato respectively. Intercropped productivity of maize and sweet potato found to be better by the application of 100kg N and 120 kg $K_2$O ${ha}_{-1}$

  • PDF

고랭지 농업에서 알팔파 재배가 토양유실 및 옥수수 생산에 미치는 영향 (Effects of Alfalfa Cultivation on Soil Erosion and Maize Production in Highland Agriculture)

  • 백계령;이정태
    • 한국환경과학회지
    • /
    • 제30권2호
    • /
    • pp.145-152
    • /
    • 2021
  • Soil conservation management is necessary for sustainable agriculture, in highland areas, and cover crops are one of the best soil conservation methods for slopes. In this study, we evaluated the effects of alfalfa cultivation on maize production, as well as soil conservation and quality. There was an outstanding soil conservation effect with alfalfa cultivation in the fallow and maize growing seasons. In particular, alfalfa cultivation reduced soil loss by up to 98% compared with bare field. It also increased the activities of soil microorganisms and the supply of organic matter. Maize production with alfalfa cultivation showed no significant differences in yield. In conclusion, alfalfa is an advantageous perennial cover crop in highland agricultural slope areas, which can have positive effects on soil quality and conservation, as well as maize production.

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil

  • Gomes, Eliane A.;Oliveira, Christiane A.;Lana, Ubiraci G. P.;Noda, Roberto W.;Marriel, Ivanildo E.;de Souza, Francisco A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.978-987
    • /
    • 2015
  • Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.

Effect of Cattle Slurry on Growth, Biomass Yield and Chemical Composition of Maize Fodder

  • Rahman, S.M.E.;Islam, M.A.;Rahman, M.M.;Oh, Deog-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권11호
    • /
    • pp.1592-1598
    • /
    • 2008
  • An experiment was carried out to study the effect of cattle slurry on maize fodder (Zea mays) production. Maize fodder was produced at 4 cattle slurry levels $T_0$ (0 ton/ha), $T_1$ (10 ton/ha), $T_2$ (12 ton/ha) and $T_3$ (14 ton/ha) in a randomized block design. Agronomic characteristics, plant heights, circumference of stems, number of leaves, leaf area and dry matter yield of maize fodder were measured. Maize plant height and stem circumference were significantly (p<0.01) influenced by the increasing rate of cattle slurry at 15, 30, 45 and 56 days after sowing. Number of leaves of fodder plants was not significant but leaf area was significant (p<0.05) among the treatment groups. The highest biomass yield (p<0.01) of maize fodder was observed in $T_2$ (44.0 ton/ha). For crude protein content, a significant difference (p<0.01) was observed in the treatment groups and the highest value was observed in $T_2$ (11.99%). Organic matter content of maize fodder showed a significant difference but ash, ADF and NDF contents showed no significant differences among treatment groups. From this study it may be concluded that the application of 12 tons of cattle slurry/ha was optimal for production of biomass and nutrient content of maize fodder.

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • 한국작물학회지
    • /
    • 제61권4호
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.