• Title/Summary/Keyword: Maize

Search Result 934, Processing Time 0.028 seconds

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

  • Dastjerdi, Raana;Karlovsky, Petr
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.334-342
    • /
    • 2015
  • Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) differences in systemic colonization were detected between the wild type strains and mutants not producing fumonisins. F. verticillioides was not detected in any of the non-inoculated control plants. The fungus grew from roots to the first two internodes/leaves of maize, rice and beet regardless of fumonisin production. The systemic growth of F. verticillioides in sorghum was limited. The results showed that fumonisin production was not required for the infection of roots of maize, rice and beet by F. verticillioides.

Digestibility of Amino Acids of Maize, Low Tannin Sorghum, Pearl Millet and Finger Millet in Caecectomized Roosters

  • Vasan, P.;Mandal, A.B.;Dutta, Narayan;Maiti, S.K.;Sharma, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.701-706
    • /
    • 2008
  • The aim of the present study was to determine the apparent and true digestibilities of amino acids of maize, low tannin sorghum, pearl millet and finger millet in adult caecectomized cockerels. Adult cockerels (n = 60), 25-weeks old, were used in this study of which 30 birds were caecectomized as per a standard method. The apparent digestibilities of amino acids of sorghum were not affected by caecectomy, but were higher for maize, finger millet and pearl millet in caecectomized cockerels. Caecectomy had no influence on the true digestibilities of amino acids of maize, but higher digestibilities were observed for most of the amino acids of sorghum and finger millet in caecectomized cockerels. Caecectomy lowered the true digestibility of cystine, threonine and serine of pearl millet. The apparent digestibilities of amino acids of maize, finger millet and pearl millet were underestimated in intact cockerels. The true digestibilities of most of the amino acids of sorghum and finger millet were underestimated, while those of cystine, threonine and serine of pearl millet were overestimated in intact cockerels. The findings suggest that the amino acid digestibility values of cereal grains determined using caecectomized cockerels might be appropriate and reliable for poultry diet formulations. Moreover, the digestibilities of amino acids of finger millet were inferior to other cereal grains, while those of pearl millet were comparable to maize and sorghum.

Influence of Different Supplements on the Commercial Cultivation of Milky White Mushroom

  • Alam, Nuhu;Amin, Ruhul;Khair, Abul;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.38 no.3
    • /
    • pp.184-188
    • /
    • 2010
  • Calocybe indica, known as milky white mushroom, grows and cultivated in the sub-tropical and temperate zones of South Asia. We investigated the most suitable supplements and their levels for the commercial cultivation of milky white mushroom. Rice bran, maize powder, and wheat bran with their different levels (10, 20, 30, 40, and 50%) were used as supplements to evaluate the yield and yield contributing characteristics of C. indica. Primordia initiation was observed between 13.5 and 19.3 days. The results indicated that the 30% maize powder supplement was effective for producing viable fruiting bodies. The maximum diameters of the pileus and stalk were observed with 30% maize powder. The highest biological and economic yield and biological efficiency were also obtained with 30% maize powder as a supplement. The results indicate that increasing the supplement level resulted in less biological efficiency, and that 30% maize powder was the best supplement level for rice straw substrate to cultivate milky white mushrooms.

C-banding Pattern of Mitotic Chromosome in Korean Indigenous Maize (한국 재래종 옥수수 체세포 염색체의 C-분염패턴)

  • Lee, In-Sup;Choe, Bong-Ho;Gustafson, J. P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.429-433
    • /
    • 1996
  • A Giemsa C-banding method was used for the identification of somatic chromosomes of Korean indigenous maize(Zea mays L.). Two Korean indigenous maize stocks and an American hybrid maize for comparison were examined. Ten deeply stained heterochromatic knobs whose position and size were different between the genotypes, two satellites and interstitial bands were observed. The length of homologous chromosomes compared by the relative lengths of chromosomes presented as a percentage of the length of chromosome 10 were different between the genotypes. The Giemsa method proved to be useful for the identification of somatic chromosomes and for the characterization of different stocks of Korean indigenous maize.

  • PDF

Physiological and Molecular Responses of Maize to High Temperature Stress During Summer in the Southern Region of Korea

  • Lee, Joon-Woo;Min, Chang-Woo;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.3
    • /
    • pp.170-174
    • /
    • 2018
  • Environmental stresses caused by climate change, such as high temperature, drought and salinity severely impact plant growth and productivity. Among these factors, high temperature stress will become more severe during summer. In this study, we examined physiological and molecular responses of maize plants to high temperature stress during summer. Highest level of $H_2O_2$ was observed in maize leaves collected July 26 compared with June 25 and July 12. Results indicated that high temperature stress triggers production of reactive oxygen species (ROS) in maize leaves. In addition, photosynthetic efficiency (Fv/Fm) sharply decreased in leaves with increasing air temperatures during the day in the field. RT-PCR analysis of maize plants exposed to high temperatures of during the day in field revealed increased accumulation of mitochondrial and chloroplastic small heat shock protein (HSP) transcripts. Results demonstrate that Fv/Fm values and organelle-localized small HSP gene could be used as physiological and molecular indicators of plants impacted by environmental stresses.

Ear and Kernel Characteristics of Korean Indigenous Maize Lines Collected in Pusan and Kyungnam (부산, 경남지역에서 수집된 한국 재래종 옥수수의 이삭 및 낟알의 특성)

  • 이인섭;박종옥
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.159-165
    • /
    • 2001
  • In order to reserve abundant germplasm for breeding new corn varieties, major characteristics of ears and kernels were evaluated with a total of 210 Korean indigenous maize lines collected from various parts of Pusan City and Kynugnam Province, Korea The average ear length and ear diameter of indigenous maize lines collected was 12.52cm and 3.33 cm, respectively. The average ear weight of the maize lines was 63.70g. The ears collected from the north-west mountainous region were the heaviest, and The ears from the south coastal region were the lightest. The average kernel weight per ear was 50.54g, and the kernel weight per ear by region showed a tendency similar to the ear weight. The kernels of maize lines collected in the north-west mountainous region were the longest, and kernel width and thickness were the largest in the west plain region. 100 kernel weight and embryo weight the largest in the lines collected in the north-west mountainous region. The degree of pericarp thickness was the smallest in the lines collected in the south coastal region, and largest in the lines collected in the west plain region. Except for the correlation coefficient width and 100 kernel weight, all correlation coefficients between the characteristics of the lines showed highly significant differences.

  • PDF

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Quantitative Analysis of Two Genetically Modified Maize Lines by Real-Time PCR

  • Lee Seong-Hun;Kang Sang-Ho;Park Yong-Hwan;Min Dong-Myung;Kim Young-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.205-211
    • /
    • 2006
  • A quantitative analytical method to detect new lines of genetically modified (GM) maize, NK603 and TC1507, has been developed by using a real-time polymerase chain reaction (PCR). To detect these GM lines, two specific primer pairs and probes were designed. A plasmid as a reference molecule was constructed from an endogenous DNA sequence of maize, a universal sequence of a cauliflower mosaic virus (CaMV) 35S promoter used in most GMOs, and each DNA sequence specific to the NK603 and TC1507 lines. For the validation of this method, the test samples of 0, 0.1, 0.5, 1.0, 3.0, 5.0, and 10.0% each of the NK603 and TC1507 GM maize were quantitated. At the 3.0% level, the biases (mean vs. true value) for the NK603 and TC1507 lines were 3.3% and 15.7%, respectively, and their relative standard deviations were 7.2% and 5.5%, respectively. These results indicate that the PCR method developed in this study can be used to quantitatively detect the NK603 and TC1507 lines of GM maize.

Event-specific Detection Methods for Genetically Modified Maize MIR604 Using Real-time PCR

  • Kim, Jae-Hwan;Kim, Hae-Yeong
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1118-1123
    • /
    • 2009
  • Event-specific real-time polymerase chain reaction (PCR) detection method for genetically modified (GM) maize MIR604 was developed based on integration junction sequences between the host plant genome and the integrated transgene. In this study, 2 primer pairs and probes were designed for specific amplification of 100 and 111 bp DNA fragments from the zSSIIb gene (the maize endogenous reference gene) and MIR604. The quantitative method was validated using 3 certified reference materials (CRMs) with levels of 0.1, 1, and 10% MIR604. The method was also assayed with 14 different plants and other GM maize. No amplification signal was observed in real-time PCR assays with any of the species tested other than MIR604 maize. As a result, the bias from the true value and the relative deviation for MIR604 was within the range from 0 to 9%. Precision, expressed as relative standard deviation (RSD), varied from 2.7 to 10% for MIR604. Limits of detections (LODs) of qualitative and quantitative methods were all 0.1%. These results indicated that the event-specific quantitative PCR detection system for MIR604 is accurate and useful.

Relative Effect of Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities is Not Altered by Soil Properties

  • Barriuso, Jorge;Mellado, Rafael P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.159-165
    • /
    • 2012
  • The rhizobacterial composition varies according to the soil properties. To test if the effect of herbicides on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize varies according to different soil locations, a comparison was made between the effects of glyphosate (Roundup Plus), a post-emergence applied herbicide, and a pre-emergence applied herbicide (GTZ) versus untreated soil. The potential effect was monitored by direct amplification, cloning, and sequencing of the soil DNA encoding 16S rRNA, and high-throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region. The results obtained using three different methods to analyze the herbicide effect on the rhizobacterial communities of genetically modified NK603 maize were comparable to those previously obtained when glyphosate-tolerant maize was grown in soil with different characteristics. Both herbicides decreased the bacterial diversity in the rhizosphere, with Actinobacteria being the taxonomic group most affected. The results suggest that both herbicides affected the structure of the maize rhizobacterial community, but glyphosate was environmentally less aggressive.