• 제목/요약/키워드: Maintenance robots

검색결과 55건 처리시간 0.022초

가공 배전선로 활선 정비 로봇 시스템의 기술 타당성 검토 (Technical Feasibility Study on Live-line Maintenance Robot System for Overhead Distribution Lines)

  • 박준영;이윤건;장영식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.49-53
    • /
    • 2022
  • The distribution live-line work method is an operation method of working in a state in which electricity flows through overhead distribution lines to minimize inconvenience to electric customers due to power failure. In June 2016, to strengthen the safety of electrical workers, Korea Electric Power Corporation announced that it would in principle abolish the rubber glove method, in which workers wore protective equipment such as rubber gloves and performed their maintenance work. In addition, KEPCO announced that it would develop a short-range live working method using smart sticks and an advanced live-line maintenance robot system where workers work without touching wires directly. This paper is a preliminary study for the development of the live-line maintenance robot system, and deals with the results of analyzing the technical feasibility of whether the live works performed by workers can be replaced by robots or not.

고층빌딩 외벽 유지관리 로봇 시스템 조사연구 (A Survey on Robot Systems for High-rise Building Wall Maintenance)

  • 문성민;허재명;이승훈;강성필;한창수;홍대희
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.359-367
    • /
    • 2013
  • With recent growth of the economy and development of construction technology, the increase of high-rise buildings is appearing rapidly in urban areas. For this reason, the interest in building maintenance has also been increasing. However, it has many safety problems because it is difficult for the workers to access the exterior wall of building. Therefore, the maintenance system of high-rise building stands out as being important issues to be developed, so that a variety of robot systems have been developed to accomplish the building-wall maintenance works. In this paper, the maintenance robots are classified in painting, inspecting, cleaning systems according to the maintenance works. Then, their locomotion and adhesion mechanisms are analyzed including their applicability to the real maintenance works. This study can be used to develop maintenance robotic system that is more efficient and stable than existing ones.

이족보행 휴머노이드 로봇의 개발과 보행패턴 생성 (Development and Walking Pattern Generation of Biped Humanoid Robot)

  • 최인수;이승정;서용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.173-178
    • /
    • 2017
  • 과거부터 로봇의 실생활 활용에 관한 연구가 지속됨에 따라 현대사회에서 이전까지의 실험 환경에서 벗어나 사회 각 분야로의 진출이 지속적으로 시도 되고 있다. 하지만 로봇이 실제 환경에 적용되기 위해서 기존의 로봇 플랫폼 상용화의 가장 큰 단점으로 꼽히는 생산 비용과 인간 기준의 작업환경에서의 적응성 문제가 선결되어야 한다. 본 논문에서는 사람의 자유도와 크기를 따르는 이족보행 형태의 로봇을 제안하였으며, 엔코더를 포텐셔미터 접목모듈로 대체하여 높은 생산 단가를 절감하고, 파트 교체가 쉬운 모듈형 설계를 채택하여 로봇의 유지 보수비용을 절감 하였다. 최종적으로 크기와 모터의 배열이 다른 두 가지의 더미로봇에 보행패턴을 적용하여 안정성을 검증하였고, 본 논문에서는 제작된 실제 로봇들을 이용한 보행 패턴을 적용 및 보행 실험을 통하여 제안한 이족보행 로봇 적용가능성을 검증하였다.

4자유도 고속 병렬 로봇의 해석 및 설계 (Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

서비스 로봇을 위한 모듈형 관절 메커니즘 설계 (Design of a Modular Type Joint Mechanism for a Service Robot)

  • 이희돈;한창수
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1272-1278
    • /
    • 2011
  • Mechanisms of the robot system should be developed according to the task. In this study, we propose improving adaptability of the robot mechanism with the modularized joint mechanism. Adaptability is the measure of the system ability to cope with change or uncertainty. Modular type joint has been widely used in development of various robots including reconfigurable robots. To build robotic systems more flexibly and quickly with low costs of manufacturing and maintenance, we have designed a modular type joint with one degree of freedom for general purpose. This module is designed to be compact, light-weight and self-controlled. In this design, we consider the kinematics and dynamics properties of the modular type joint.

Flexible and Scalable Formation for Swarm Systems

  • Kim Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.222-229
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. The main result is the maintenance of flexible and scalable formation. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.

임베디드 소프트웨어 유지보수 노력의 영향요인 연구 : 반도체 웨이퍼 가공라인 사례를 중심으로 (Factors Influencing the Efforts for Embedded Software Maintenance : A Case from Semiconductor Wafer Processing Line)

  • 조남형;김치린;김미량
    • 디지털융복합연구
    • /
    • 제15권9호
    • /
    • pp.211-221
    • /
    • 2017
  • 반도체 산업은 임베디드 소프트웨어를 통해 운영 통제되는 자동화설비를 통해 첨단상품을 생산한다. 반도체를 생산하는 로봇과 각종 설비의 임베디드 소프트웨어 유지보수는 제품의 품질과 신뢰성 제고를 위한 필수적인 과정으로 반도체 장비의 라이프 사이클을 고려할 때 상당히 높은 비중을 차지하는 활동영역이다. 그러나 이 분야에 대한 학술적 관심사는 그리 높지 않는데, 본 연구에서는 반도체 웨이퍼 생산장비를 구동하는 소프트웨어 관련 문제로 보고된 사건을 대상으로 502개의 데이터를 무작위 추출방식으로 수집하여 임베디드 소프트웨어의 유지보수 노력에 영향을 미치는 요인들을 분석해 보았다. 결론으로 실무적인 시사점도 제시하였다.

머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구 (A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm)

  • 김미진;고광인;구교문;심재홍;김기현
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.

태양광발전시설 무인 유지보수 로봇 개발 (Development of Unmanned Cleaning Robot for Photovoltaic Panels)

  • 이현규;이상순
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

로보트 교시.정비작업시의 안전속도한계 (Safe Speed Limit of Robot Arm During Teaching and Maintenance Work)

  • 김동하;임현교
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.64-70
    • /
    • 1993
  • Serious injuries and deaths due to multi-jointed robot occur when a man mispercepts. especially during robot teaching and maintenance work. Since industrial robots often operate with unpredictable motion patterns, establishment of safe speed limit of robot arm is indispensable. An experimental emergency conditions were simulated with a multi-jointed robot. and response characteristics of human operators were measured. The result showed that failure type, robot arm axis. and robot arm speed had significant effects on human reaction time. The reaction time was slightly increased with robot arm speed. though it showed somewhat different pattern owing to failure type. Furthermore the reaction time to the axis which could flex or extend. acting on a workpiece directly. was fastest and its standard deviation was small. The robot arm speed limit securing a‘possible contact zone’based on overrun distance was about 25cm/sec. and in this sense the validity of safe speed limits suggested by many precedent researchers were discussed.

  • PDF