• Title/Summary/Keyword: Main-damper

Search Result 168, Processing Time 0.025 seconds

A Study on Rattle Noise of Automotive Manual Transmission by way of Torsinal Characteristics of a Clutch Disc (클러치 비틀림특성에 의한 자동차 수동변속기 치타음에 관한 연구)

  • Hong, D.P.;Chung, T.J.;Tae, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.79-89
    • /
    • 1995
  • Rattle noise occurs at manual transmission as idling and driving of a automotive. It can be solved by torsional characteristics of a clutch disc. A clutch disc consist of a region of pre-damper and main-damper. Rattle noise is affected by pre-damper and main-damper equipped for a torsional spring and friction washer. Pre-damper range covers noise radiating from manual transmission when engine is idling and main-damper range covers noise when engine is driving. The aim of this reserch is to clear transmission rattle noise by way of torsional characteristics of a clutch disc. The experiment is carried out as idling and driving of a automobile equipped for 1.5L MPI engine, dry single-disc type clutch and manual transmission. In this study, the results show for a vibration of manual transmission as idling and driving can be cleared by a clutch disc of Pre-damper type.

  • PDF

A semi-active mass damping system for low- and mid-rise buildings

  • Lin, Pei-Yang;Lin, Tzu-Kang;Hwang, Jenn-Shin
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.63-84
    • /
    • 2013
  • A semi-active mass damping (SMD) system with magnetorheological (MR) dampers focusing on low- and mid-rise buildings is proposed in this paper. The main purpose of this study is to integrate the reliable characteristics of the traditional tuned mass damper (TMD) and the superior performance of the active mass damper (AMD) to the new system. In addition, the commonly seen solution of deploying dense seismic dampers throughout the structure nowadays to protect the main structure is also expected to switch to the developed SMD system on the roof with a similar reduction performance. In order to demonstrate this concept, a full-size three-story steel building representing a typical mid-rise building was used as the benchmark structure to verify its performance in real life. A numerical model with the interpolation technique integrated was first established to accurately predict the behavior of the MR dampers. The success of the method was proven through a performance test of the designated MR damper used in this research. With the support of the MR damper model, a specific control algorithm using a continuous-optimal control concept was then developed to protect the main structure while the response of the semi-active mass damper is discarded. The theoretical analysis and the experimental verification from a shaking table test both demonstrated the superior mitigation ability of the method. The proposed SMD system has been demonstrated to be readily implemented in practice.

Ground Resonance Instabilities Analysis of a Bearingless Helicopter Main Rotor (무베어링 헬리콥터 로터의 지상공진 불안정성 특성 해석)

  • Yun, Chul-Yong;Kee, Young-Jung;Kim, Tae-Joo;Kim, Deog-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.352-357
    • /
    • 2012
  • The ground resonance instability of a helicopter with bearingless main rotor hub were investigated. The ground resonance instability is caused by an interaction between the blade lag motion and hub inplane motion. This instability occurs when the helicopter is on the ground and is important for soft-inplane rotors where the rotating lag mode frequency is less than the rotor rotational speed. For the analysis, the bearingless rotor was composed of blades, flexbeam, torque tube, damper, shear restrainer, and pitch links. The fuselage was modeled as a mass-damper-spring system having natural frequencies in roll and pitch motions. The rotor-fuselage coupling equations are derived in non-rotating frame to consider the rotor and fuselage equations in the same frame. The ground resonance instabilities for three cases where are without lead-lag damper and fuselage damping, with lead-lag damper and without fuselage damping, and finally with lead-lag damper and fuselage damping. There is no ground resonance instability in the only rotor-fuselage configuration with lead-lag damper and fuselage damping.

Control of a building complex with Magneto-Rheological Dampers and Tuned Mass Damper

  • Amini, F.;Doroudi, R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.181-195
    • /
    • 2010
  • Coupled building control is a viable method to protect tall buildings from seismic excitation. In this study, the semi-active control of a building complex is investigated for mitigating seismic responses. The building complex is formed of one main building and one podium structure connected through Magneto-Rheological (MR) Dampers and Tuned Mass Damper. The conventional semi-active control techniques require a primary controller as a reference to determine the desired control force, and modulate the input voltage of the MR damper by comparing the desired control force. The fuzzy logic directly determines the input voltage of an MR damper from the response of the MR damper. The control performance of the proposed fuzzy control technique for the MR damper is evaluated for the control problem of a seismically-excited building complex. In this paper, a building complex that include a 14-story main building and an 8-story podium structure is applied as a numerical example to demonstrate the effectiveness of semi-active control with Magneto-Rheological dampers and its comparison with the passive control with the Tuned Mass Damper and two uncoupled buildings and hybrid semi-active control including the Tuned Mass Damper and Magneto-Rheological dampers while they are subject to the earthquake excitation. The numerical results show that semi-active control and hybrid semi-active control can significantly mitigate the seismic responses of both buildings, such as displacement and shear force responses, and fuzzy control technique can effectively mitigate the seismic response of the building complex.

A proposal for improving the behavior of CBF braces using an innovative flexural mechanism damper, an experimental and numerical study

  • Ghamari, Ali;Jeong, Seong‐Hoon
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.455-466
    • /
    • 2022
  • Despite the considerable lateral stiffness and strength of the Concentrically Braced Frame (CBF), it suffers from low ductility and low seismic dissipating energy capacity. The buckling of the diagonal members of the CBF systems under cyclic loading ended up to the shortcoming against seismic loading. Comprehensive researches have been performing to achieve helpful approaches to prevent the buckling of the diagonal member. Among the recommended ideas, metallic damper revealed a better success than other ideas to enhance the behavior of CBFs. While metallic dampers improve the behavior of the CBF system, they increase constructional costs. Therefore, in this paper, a new steel damper with flexural mechanism is proposed, which is investigated experimentally and numerically. Also, a parametrical revision was carried out to evaluate the effect of thickness, slenderness ratio, angle of the main plate, and height of the main plates on the proposed damper. For the parametrical study, 45 finite element models were analyzed and considered. Experimental results, as well as the numerical results, indicated that the proposed damper enjoys a stable hysteresis loop without any degradation up to a high rotation equal to around 31% that is significantly considerable. Moreover, it showed a suitable performance in case of ductility and energy dissipating. Besides, the necessary formulas to design the damper, the required relations were proposed to design the elements outside the damper to ensure the damper acts as a ductile fuse.

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

Use of semi-active tuned mass dampers for vibration control of force-excited structures

  • Setareh, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.341-356
    • /
    • 2001
  • A new class of semi-active tuned mass dampers, named as "Ground Hook Tuned Mass Damper" (GHTMD) is introduced. This TMD uses a continuously variable semi-active damper (so called 'Ground-Hook') in order to achieve more reduction in the vibration level. The ground-hook dampers have been used in the auto-industry as a means of reducing the vibration of primary suspension systems in vehicles. This paper investigates the application of this damper as an element of a tuned damper for the vibration reduction of force-excited single degree of freedom (SDOF) models that can be representative of many structural systems. The optimum design parameters of GHTMDs are obtained based on the minimization of the steady-state displacement response of the main mass. The optimum design parameters which are evaluated in terms of non-dimensional values of the GHTMD are obtained for different mass ratios and main mass damping ratios. Using the frequency responses of the resulting systems, performance of the GHTMD is compared to that of equivalent passive TMD, and it is found that GHTMDs are more efficient. A design methodology to obtain the tuning parameters of GHTMD using the relationships developed in this paper is presented.

Study of the non-linearity of cable damper to enhance damping performance of stay cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.147-156
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigate the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a energy loss ratio of cable potential, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, it is assumed to exist three kinds of multi-mode patterns such as ambient vibration, support excitation and rain-win induced vibration. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5. In case of support excitation or rain-wind induced vibration is between 0.5 and 1.0. In this study, the effects of cable sag and inclination angle are included in the asymptotic design equation of damped cable structures.

  • PDF

Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable (사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구)

  • Seo, Ju-Won;Koh, Hyun-Moo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

A Study on the Optimization Design of Automotive Damper Using Genetic Algorithm (유전알고리즘을 이용한 차량용 댐퍼의 최적설계에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.80-86
    • /
    • 2018
  • A damper is a hydraulic device designed to absorb or eliminate shock impulses which is acting on the sprung mass of car body. It converts the kinetic energy of the shock into another form of energy, typically heat. The main mechanism for providing damping is by shearing the hydraulic fluid as it flows through restrictions. Since the damping mechanism depends on the flow restrictions, these restrictions are very important in damper design. Damper engineers often try several combinations of valve shims, piston orifices and bleed orifices before finding the best combination for a particular setup on a car. Therefore, the ability to tune a damper properly without testing is of great interest in damper design. For this reason, many previous researches have been done on modeling and simulation of the damper. This paper explains a genetic algorithm method to find the optimal parameters for the design objective and the simulation results agree well with the targeted damping characteristics.