• Title/Summary/Keyword: Main-Bonding

Search Result 246, Processing Time 0.023 seconds

Structural Influence of SNS Social Capital on SNS Health Information Utilization Level (SNS의 사회적자본이 건강정보 활용수준에 미치는 구조적 영향력)

  • Park, Jaesung;Kim, Kyeong-Na
    • The Korean Journal of Health Service Management
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 2020
  • Objectives : The purpose of this study was to test fitness of the structured model of SNS activities for health information. Methods : A structured questionnaire were administered to 500 subjects. A structural equation model was applied to collected data. Results : The response rate was 73.9%. The respondents mostly used Facebook and KakaoStory. They spent 70 minutes per day and 21~30% of this usage was taken by health information. In the variances, those who has religion more actively exchanged information about diseases and medical institutions. The goodness-of-fit of the model was .81(GFI) and .90(CFI). The main path was bridging capital -> bonding capital -> credibility -> SNS activities for health information. The path from quality of sharing information to SNS activities was not significant. It could be explained by the restriction of digital literacy. Conclusions : SNS activities for health information were determined by credibility, currency and bonding social capital. Bridging social capital, indirectly, influenced SNS activities through bonding social capital. Thus building bonding social capital would be a critical success factor for SNS.

SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti (도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가)

  • Lee, Jung-Hwan;Ahn, Jae-Seok
    • Journal of dental hygiene science
    • /
    • v.9 no.2
    • /
    • pp.153-160
    • /
    • 2009
  • The purposed of this study was to investigate the effect of Gold bonding agent as intermediate layer between metal substrate and ceramic coating. Gold bonding agent used to seal off any surface porosity, to mask the greyish color of the metal, and to provide an underlying bright golden hue to the ceramic coverage. The adhesion between metal substrate and ceramic is related to diffusion of oxygen during ceramic firing. The oxide layer produced on non-precious alloy anti titanium was considered to have a potentially adverse effect on metal-ceramic bonding. The oxidation characteristics of titanium and non-precious alloys are the main problem. Every group were divided into test and control groups. Control groups are carried out process of degassing for product oxide layer. Au coating was applied on each Ni-Cr, Co-Cr alloys and cp-Ti specimens with difference surface condition or degassing. Specimens surfaces and cutting plane was characterized by SEM/EDS. Results suggested that Au coating is effective barriers to protect metal oxidation during ceramic firing.

  • PDF

AII-Bond - Fourth Generation Dentin Bonding System

  • Suh, Byoung I.
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.3 no.1
    • /
    • pp.23-31
    • /
    • 1995
  • The All-Bond system is a unique development in the field of adhesive dentistry. It is a universal bonding system that will bond composite to all dental-related surfaces: dentin, enamel, metal alloy (precious and nonprecious), amalgam, porcelain, and composite. It is also the only system that allows use of both the conservative and all-etch techniques. The main purpose of this paper is to explain the features of the All-Bond system. Its chemistry and a working hypothesis are shown as well.

  • PDF

Injection Molding of Silicon Nitride Powders Treated with Coupling Agents (커플링제로 처리된 질화규소 분말의 사출성형)

  • 송휴섭
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.2
    • /
    • pp.131-138
    • /
    • 1993
  • The effects of silane coupling agents on the injection molding process were investigated using silicone nitride mixtrues with a binder system containing polypropylene as a major binder (55vol% solid loading). The formation of bonding between silicon nitride powder and coupling agents was confirmed through the analyses of powder surface. The use of coupling agents improved mixing characteristics judged by the torque change during mixing process. the coupling agents also reduced molten viscosity of the mixture considerably, which is a main factor to determine the flow of the mixture. However, the bonding between coupling agents and polymers had a negative effect on the debinding process by retarding the thermal decomposition.

  • PDF

Roadmap toward 2010 for high density/low cost semiconductor packaging

  • Tsukada, Yutaka
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 1999.12a
    • /
    • pp.155-162
    • /
    • 1999
  • A bare chip packaging technology by an encapsulated flip chip bonding on a build-up printed circuit board has emerged in 1991. Since then, it enabled a high density and low cost semiconductor packaging such as a direct chip bonding on mother board and high density surface mount components, such as BGA and CSP. This technology can respond to various requirements from applications and is considered to take over a main role of semiconductor packaging in the next decade.

  • PDF

Study on the nucleophilic reaction on Orgniac Thin Films (유기물 박막에서 일어나는 친핵성 반응에 대한 연구)

  • Oh, Teresa;Kim, Hong-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.170-171
    • /
    • 2006
  • The chemical shift of SiOC film was observed according to the flow rate ratio. SiOC film has the broad main band of $880{\sim}1190cm^{-1}$ and the sharp Si-$CH_3$ bond at $1252cm^{-1}$, and the infrared spectra in the Si-O-C bond moved to low frequency according to the increasing of an oxygen flow rate. The chemical shift affected the carbon content in the SiOC film, and the decreasing of carbon atoms elongated the C-H bonding length, relatively. The main bond without the sharp Si-$CH_3$ bond at $1252cm^{-1}$ consisted of Si-C, C-O and Si-O bonds, and became the bonding structure of the Si-O-C bond.

  • PDF

EFFECTS OF SPUTTERED NON-PRECIOUS METALLIC THIN FILMS ON THE CHEMICAL BONING BETWEEN DENTAL ALLOY AND PORCELAIN (비귀금속 박막이 치과용합금과 치과용도재와의 화학적결합에 미치는 영향)

  • Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.481-492
    • /
    • 1992
  • Author measured the bonding strength between Dental Porcelain and Nonprecious Dental Alloy and analyzed diffusion Phenomena at the interfaceby by Auger electron spectroscopy and also Electron spectroscopy for Chemical Analysis. The each specimen was sputtered with Al, Cr, In and Sn. 1. Ni whic is the main element of the matris of dental nonprecious alloy diffuse more than the other element and the Ni diffusion rate of each specimen was well coordinated with the bonding strength of each. 2. The Sn thin film suppress the diffusion rate of Ni of matrix into the Dental Porcelain than the In or Cr thin films. 3. The Al thin film suppress the diffusion rate of Ni than the Sn thin film. 4. The main coponent of dental porcelain : Al, Si, Mo diffused into the matrix of alloy. It means that the each element of dental alloy and dental porelain diffused into the each other part.

  • PDF

Theoretical Investigation of Triple Bonding between Transition Metal and Main Group Elements in (η5-C5H5)(CO)2M≡ER (M = Cr, Mo, W; E = Si, Ge, Sn, Pb; R = Terphenyl Groups)

  • Takagi, Nozomi;Yamazaki, Kentaro;Nagase, Shigeru
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.832-836
    • /
    • 2003
  • To extend the knowledge of triple bonding between group 6 transition metal and heavier group 14 elements, the structural and bonding aspects of ($η^5-C_5H_5$)$(CO)_2$M≡ER (M = Cr, Mo, W; E = Si, Ge, Sn, Pb) are investigated by hybrid density functional calculations at the B3PW91 level. Substituent effects are also investigated with R = H, Me, $SiH_3$, Ph, $C_6H_3-2,6-Ph_2$, $C_6H_3-2,6-(C_6H_2-2,4,6-Me_3)_2$, and $C_6H_3-2,6-(C_6H_2-2,4,6- iPr_3)_2$.

Investigation on the Spot for Grounding Systems in Buildings

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Kim, Hyang-Kon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • This paper deals with investigation on the spot for grounding systems of buildings based on international standards at construction sites. The investigation was carried out for grounding method, grounding type, shape of grounding electrode, grounding for a lightning protection system, continuity of steelwork in reinforced concrete structures, etc. The investigation on the spot was performed by a researcher and engineer with over fifteen years of industry experience all over the country. As a result of the investigation on the spot in 13 buildings, common grounding and structure grounding methods were dominant. The safety improvement methods include installation of equipotential bonding conductors for the connection to the main earthing terminal, equipotential bonding conductors for supplementary bonding, use of Surge Protective Devices (SPD), and safe connections between earthing conductors and the rebar.

Large Area Wafer-Level High-Power Electronic Package Using Temporary Bonding and Debonding with Double-Sided Thermal Release Tape (양면 열박리 테이프 기반 임시 접합 공정을 이용한 대면적 웨이퍼 레벨 고출력 전자패키지)

  • Hwang, Yong-Sik;Kang, Il-Suk;Lee, Ga-Won
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.36-40
    • /
    • 2022
  • High-power devices, such as LEDs and radars, inevitably generate a large amount of heat, which is the main cause of shortening lifespan, deterioration in performance, and failure of electronic devices. The embedded IC process can be a solution; however, when applied to large-area substrates (larger than 8 in), there is a limit owing to the difficulty in the process after wafer thinning. In this study, an 8-in wafer-level high-power electronic package based on the embedded IC process was implemented with temporary bonding and debonding technology using double-sided thermal release tape. Good heat-dissipation characteristics were demonstrated both theoretically and experimentally. These findings will advance the commercialization of high-power electronic packaging.