• Title/Summary/Keyword: Main spindle taper

Search Result 6, Processing Time 0.018 seconds

A Study on the Static Stiffness in the Main Spindle Taper of Machine Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.15-20
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT shank(7/24 long taper) and the HSK tool shank(1/10 short taper) in the main spindle taper of machine tool. The static stif71ess test was performed under different experimental conditions. It is turned out that the effective axial drawing force is larger than 6kN in the 7/24 test tool shank and BkN in the 1/10 test tool shank. As a test result, considering that the actual drawing force of the machining center is about 1300k2f and axal drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 test tool shank superior to 7/24 test tool shank in the static stiffness.

  • PDF

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구)

  • Hwang Y.K.;Cho Y.D.;Lee C.M.;Chung W.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1) (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1))

  • Hwang Young-Kug;Chung Won-Jee;Lee Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method (유한요소법을 이용한 주축 인터페이스부의 정강성 특성)

  • Hwang, Young-Kug;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

A Study on the Static Stiffness in the Main Spindle Taper of Machin Tool (공작기계 주축 테이퍼 결합부 정강성에 관한 연구)

  • 김배석;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.149-154
    • /
    • 2001
  • This paper presents the experimental study of the static stiffness for the BT Shank(7/24 Long Taper) and the HSK Tool Shank(1/10 Short taper). The static stiffness test was performed under different experimental conditions. The results obtained are as follows ; As known in the analysis results of the Load-Deflection diagram of the 7/24 Test tool shank, it is turned out that the diagram is a linear characteristics without regard to axial drawing force and according as the axial drawing force get to the 6kN, the static stiffness of the shank increase linearly. Thus the effective axial drawing force which maintains the static stiffness of the Main spindle taper of Machine Tool is larger than 6kN. It is found that the Load-Deflection diagram with 6kN of drawing force in the 1/10 Test tool shank is characterized by non-linear. But according as the axial drawing force is increasing by the 8kN, the diagram is characterized by linear. And increasing amount of deflection is about 60%. Therefore commendable axial drawing force is larger than 8kN. As a result, considering that the actual drawing force of the Machining Center is about 1300kgf and axial drawing force 12kN is equivalent amount as a 1220kgf, it is turned out that 1/10 Test tool shank superior to 7/24 Test tool shank in the static stiffness.

  • PDF

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF