• 제목/요약/키워드: Main spindle interface

검색결과 8건 처리시간 0.021초

유한요소법을 이용한 주축 인터페이스부의 정강성 특성 (Static Stiffness Characteristics of Main Spindle Interface using Finite Element Method)

  • 황영국;정원지;이춘만
    • 한국공작기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.40-46
    • /
    • 2007
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems such as the run-out errors and reduced stiffness must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an analysis of static stiffness in the main spindle interface. Finite element analysis is performed by using a commercial code ANSYS according to variation of cutting force, clamping force and rotational speed. From the finite element results, it is shown that the rotational speed and clamping force mostly influence on the variation of the static stiffness in the main spindle interface.

절삭저항을 고려한 툴 인터페이스부의 정강성 분석 (A Study on Static Stiffness of Tool Interfaces Considering Cutting Resistance)

  • 신재호;이춘만;황영국
    • 한국공작기계학회논문집
    • /
    • 제17권3호
    • /
    • pp.59-64
    • /
    • 2008
  • Spindle units of machine tool are very important part in the manufacturing area. Recently high speed machining has become the main issue of metal cutting. To develop high speed machine tools, a lot of studies have been carried out for high speed spindle. Due to increase of the rotational speed of the spindle, there has been renewal of interest in tooling system of high speed spindle. This paper concerns the static stiffness in the main spindle interface according to variation of clamping force, rotational speed and tool holder shank. Finite element analysis is performed by using a commercial code ANSYS workbench. From the results, it has been shown that the geometry of tool holder shank is mostly influence on the variation of the static stiffness in the main spindle interface.

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed)

  • 황영국;조영덕;이춘만;정원지
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF

고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구 (1) (A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (1))

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.147-155
    • /
    • 2006
  • High speed machining has become the main issue of metal rutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evolution of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

PLC 기반 주축 모터의 토크에 의한 드릴링 절삭상태 감시에 관한 연구 (A Study on Monitoring Drilling using Torque from Main Spindle Based on PLC in CNC Machine Tools)

  • 윤상환;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제17권3호
    • /
    • pp.7-15
    • /
    • 2018
  • Drilling processes require a cutting monitoring function that can be analyzed and gives feedback about strange conditions, tool collision and tool wear in real time. In this study, we proposed a drill monitor using the torque from the main spindle in CNC machine tools and a PROFIBUS network as a PLC-based interface. This paper studied drilling torque changes depending on drill size, the repetition cutting of the drilling and the drill's wear in the same cutting conditions. The material of the drills was high speed steel (HSS) and uncoated. The drills chosen were 2.7 mm, 6.7 mm, and 10.0 mm in diameter. These drills were selected because they had basic holes for their taps.

프로피버스 통신을 이용한 실시간 절삭 상태 모니터링에 관한 연구 (A Study on Real Time Cutting Monitoring using Profibus)

  • 윤상환;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2016
  • The cutting processes used for monitoring engineering includes analysis and feedback about strange conditions, tools collision and tools wear in real time, for improving the working ratio of equipment and productivity. In this study, we proposed monitoring using profibus to increase the reliability as the most important factor for cutting monitoring. The profibus can increase the reliability of cutting monitoring for cutting torque of a main spindle motor and a feed motors through PLC-based interface.

금형 가공 공정 모니터링을 위한 웹 기반 모니터링 시스템 개발 (Development of Web-based Monitoring System for Monitoring Mold Manufacturing Process)

  • 신봉철;최진화;신광호;윤길상;조명우;김건희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.121-125
    • /
    • 2005
  • In this paper, the web-based monitoring system is developed for the process monitoring of mold manufacturing. The cutting force is measured by hall-sensors which is low cost and useful to be installed in machine tool indirectly. Specially, the current of main spindle in machine tool is converted into cutting force by various experiments. For effective emote monitoring, the interface that is able to offer the information of current process and cutting signal to client is establish.

  • PDF