• Title/Summary/Keyword: Main hemming

Search Result 8, Processing Time 0.021 seconds

Automatic Generation of Timing Chart for Car Panel Hemming Die Design (자동차 패널용 헤밍 금형설계를 위한 타이밍차트 자동생성)

  • Kim, D.J.;Song, Y.J.;Chung, H.;Han, Y.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.7 s.88
    • /
    • pp.496-503
    • /
    • 2006
  • The inner and outer car panels for bonnet, door, and trunk lid are assembled by hemming rather than welding. To achieve successful fabrication of these panels, the complicated timing chart of hemming units for pre-and main hemming stages should be made to optimal one. In this study, a design system for automatic timing chart generation is developed. Using AutoCAD VBA and EXCEL data chart, hemming die design parameters and guidelines were put into the program to give hemming unit drawings and consequent timing charts. Then the prepared timing charts were checked and modified. The effectiveness of the system is verified by applying it successfully to hemming unit design for bonnet panel joining.

Numerical Evaluation of Hemming Defects Found on Automotive Door Panels (유한요소해석에 의한 자동차 도어패널의 헤밍 결함 평가)

  • Seo, O.S;Jeon, K.Y;Rhie, C.H;Kim, H.Y
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2015
  • Hemming is used to connect two sheet metal components by folding the edge of an outer panel around an inner panel to create a smooth edge. The minimization of hemming defects is critical to the final quality of automobile products because hemming is one of the last operations during fabrication. Designing the hemmed part is not easy and is influenced by the geometry of the bent part. Therefore, the main problem for automotive parts is dimensional accuracy since formed products often deviate geometrically due to large springback. Few numerical approaches using 3-dimensional finite element model have been applied to hemming due to the small element size which is needed to properly capture the bending behavior of the sheet around small die corner and the comparatively big size of automotive opening parts, such as doors, hoods and deck lids. The current study concentrates on the 3-dimensional numerical simulation of hemming for an automotive door. The relationship between the design parameters of the hemming operation and the height difference defect is shown. Quality improvement of the automotive door can be increased through the study of model parameters.

Development of Automatic Drawing Program for Hemming Unit by AutoCAD (AutoCAD를 이용한 자동차용 헤밍 유닛의 자동작도 프로그램 개발)

  • Kim, D.S.;Song, Y.J.;Chung, H.;Kim, Y.B.;Hahn, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.163-171
    • /
    • 2007
  • Due to the complicated character of the hemming process for automobile panels, it is very difficult to setup a consistent and reliable die design guide rule that require subtle decision of experienced experts and multiple trials during hemming die design and making. In this paper an automatic die design system of hemming units is pursued by presenting some algorithms, in which geometric data and constraints of the hemming units were converted to formula. The geometries and kinematics of all part for two kinds of hemming units, 2-link type and 4-link type were analysed kinematically to build the design algorithm. The algorithms were verified by automatic drawing used AutoCAD VBA program in example for the hemming unit design of a bonnet.

Kinematic Motion Analysis for Automatic Hemming Unit Design of Car Panel (자동차 패널 헤밍유닛의 설계자동화를 위한 기구학적 해석)

  • Kim, D.J.;Chung, H.;Song, Y.J.;Hahn, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.438-445
    • /
    • 2006
  • Due to the complicated character of the hemming process for automobile panels, it is very difficult to set up a consistent and reliable die design guide rule that does not require subtle decision of experienced experts during design stage and multiple trials during hemming die making. In this paper an automatic die design system of hemming units is pursued by presenting some algorithms, in which geometric data and constraints of the hemming units were converted to formula. two kinds of hemming units, 2-link type and 4-link type, were selected as examples and the geometries and kinematics of all parts were analyzed to build the design algorithm.

  • PDF

A Parametric Study of the Hemming Process by Finite Element Analysis (유한요소해석에 의한 헤밍 공정 변수연구)

  • Kim, Hyung-Jong;Choi, Won-Mog;Lim, Jae-Kyu;Park, Chun-Dal;Lee, Woo-Hong;Kim, Heon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • Implicit finite element analysis of the flat surface-straight edge hemming process is performed by using a commercial code ABAQUS/Standard. Methods of finite element modeling for springback simulation and contact pair definition are discussed. An optimal mesh system is chosen through the error analysis that is based on the smoothing of discontinuity in the state variables. This study has focused on the investigation of the influence of process parameters in flanging, pre-hemming and main hemming on final hem quality, which can be defined by turn-down, warp and roll-in. The parameters adopted in this parametric study are flange length, flange angle, flanging die corner radius, face angle and insertion angle of pre-hemming punch, and over-stroke of pre-hemming and main hemming punches.

Prediction of Turn-down and Roll-in in Hemming Processes through the Comparison between FEA and Experiment (유한요소해석과 실험의 비교를 통한 헤밍 공정에서의 턴다운 및 롤인 결함 예측)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.101-105
    • /
    • 2005
  • Hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having a great influence on the outward appearance of them. The hem quality can be quantitatively defined by the hemming defects including turn-down, warp and roll-in. However, it is difficult to evaluate and predict the hem quality through the experimental measurement or the numerical calculation since the size of defects is very small. This study is focused on how to simulate in the finite element analysis (FEA) the same conditions as in the experiment. The FEA result on turn-down, that was obtained from a finite element model including the spring element linked to the flanging pad, had a good correlation with the experimental data. It was found that the radius of curvature of the flange deeply affects the final hem quality and therefore high rigidity of forming tools and tight assembling tolerance are highly recommended. An over-stroke of the main hemming punch is also proposed to reduce the turn-down.

  • PDF

Study on the Evaluation and Prediction of Micro-Defects in the Hemming Process (헤밍 공정에서의 미세 결함 평가 및 예측에 관한 연구)

  • Jung H. C.;Lim J. K.;Kim H. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.533-540
    • /
    • 2005
  • The hemming process, composed of flanging, pre-hemming and main hemming, is the last one of a series of forming processes conducted on the automotive panels, having greater influence on the outward appearance of cars rather than on their performance. The hem quality can be quantitatively defined by the hemming defects including turn-down/up, warp and roll-in/out. However, it is difficult to evaluate and predict the hem quality through an experimental measurement or a numerical calculation since the size of defects is very small. This study aims to precisely evaluate the hemming defects, especially turn-down and roll-in, through numerical and experimental approaches and to investigate the influence of process parameters on the hem quality, focused on how to simulate the same conditions as in the experiment by the finite element analysis (FEA). The FEA results on the turn-down and roll-in obtained from a model composed of the optimum-sized elements, including a spring element linked to the flanging pad, and given the double master contact condition between the inner and outer panels, had a good correlation with the experimental data. It is thought possible to make an early estimate of the hem quality in a practical automotive design by applying the methodology proposed in this study.

A Comparative Study of Tight Skirt Sewing Methods -Focusing on the Sewing Methods Shown in Reference Text Books on Clothing Configuration and used in Domestic Consumer Products- (타이트스커트 봉제방법에 관한 비교 연구 -의복구성 교재와 국내 브랜드 제품을 중심으로-)

  • Kim, Sun-Young;Choi, Young-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.11
    • /
    • pp.1510-1519
    • /
    • 2007
  • This comparative study analyzes and compares tight skirt sewing methods which are found in the clothing configuration reference text books available in contemporary universities and which are used in commercially-available domestic consumer products. The study samples included 15 text books and 12 tight skirt consumer products of different brands on sale at three department stores in Seoul each of which had a belt, a back-centered zipper, and back double slits. The findings of the study are summarized as follows: First, text books mainly show very basic sewing methods of using zippers on both sides of the straight-lined waist belt. This indicates that it is necessary for such methods to be complemented so that they cover a recent variety of designs, materials, and sewing machines. For consumer products, the main sewing method is to use a curved waist belt and a console zipper in silhouette running across half the hipbone. Second, consumer products employ three different types of cutting and sewing methods for putting an inseam on the center of the back slit part: to leave the whole inseam hemmed in the back center, to cut the left side of the inseam to the upper part of the back slit, and to cut the inseam to both the upper parts of the back slit. However, a method shown in most of the sampled text books is to cut the inseam of the back center to both the upper parts of the back slit. Third, the way of finishing a bottom edge hem in the text books is to do slip-stitch, herringbone stitch, and slinting hemming, in order after doing over-lock stitch, or to cut the hem on the bias and then slip-stitch, while for the consumer products the most frequently used sewing method is to finish the bottom edge hem by doing secoui-stitch. Finally, while in the text books the method of stitching darts and tucks is used for lining, the main lining method used in consumer products is to make tucks only. Also in the way of stitching the side seams of lining or the seams of the back center, there is a difference between the two sample groups of text books and the consumer products: while the former suggests using both open seams and over-lock stitch, the latter is found to finish the seams using an over-lock stitch only.