• 제목/요약/키워드: Main engine

검색결과 1,100건 처리시간 0.029초

500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구 (A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

ENGINE CONTROL USING SPEED FEEDBACK

  • Stotsky, A.;Solyom, S.;Kolmanovsky, I.V.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.477-481
    • /
    • 2007
  • In this article we present a new, reference model based, unified strategy for engine control. Three main modes are considered: first is the driver control mode where the driver controls the engine via the pedal position; second is the dashpot mode, that is, when the driver takes his foot off the pedal; and, lastly is the idle speed control mode. These modes are unified so that seamless transitions between modes now becomes possible. The unification is achieved due to the introduction of a reference model for the engine speed whereby only the desired engine speed is different for different modes while the structure of the control system remains the same for all the modes. The scheme includes an observer that estimates unknown engine load torque. A proof of robustness with respect to unknown load disturbances both within the operating modes and during intermode transitions is given.

스파크 점화 기관의 노크 모델에 관한 연구 (A study on knock model in spark ignition engine)

  • 장종관;이종태;이성열
    • 오토저널
    • /
    • 제14권5호
    • /
    • pp.30-40
    • /
    • 1992
  • Spark knock obstructs any improvement in the efficiency and performance of an engine. As the knock mechanism of spark ignition engine, the detonation and the autoignition theory have been offered. In this paper, the knock model was established, which was able to predict the onset of knock and knock timing of spark ignition engine by the basis of autoignition theory. This model was a function of engine speed and equivalent air-fuel ratio. When this established knock model was tested from 1000rpm to 3000rpm of engine speed data, maximum error was crank angle 2 degrees between measured and predicted knock time. And the main results were as follows by the experimental analysis of spark knock in spark ignition engine. 1) Knock frequency was increased as engine speed increased. 2) Knock amplitude was increased as mass of end gas increased. 3) Knock frequency was occured above minimum 18% mass fraction of end gas.

  • PDF

선박용 4행정 디젤기관의 배기 과급기 엔진 매칭에 관한 해석적 연구 (An Analytical Study on the Turbocharger Engine Matching of the Marine Four-Stroke Diesel Engine)

  • 최익수;김현규;유봉환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.86-87
    • /
    • 2005
  • The combustion characteristics of the D.I. diesel engine are largely dependent on the air-fuel ratio and the gas exchange process. The main factors are the shape of combustion chamber, fuel injection system, air flow inside the cylinder, intake air mass flow rate and so forth. Because these factors affect the combustion in a mutual and combined manner, it is very important to clearly understand the correlation of these factors in order to provide the combustion improvement plans. In this paper, we studied the performance and the gas exchange process of marine four-stroke engine using the engine cycle simulation. Also, we predicted briefly turbocharger engine matching.

  • PDF

클러치 비틀림특성에 의한 자동차 수동변속기 치타음에 관한 연구 (A Study on Rattle Noise of Automotive Manual Transmission by way of Torsinal Characteristics of a Clutch Disc)

  • 홍동표;정태진;태신호
    • 한국자동차공학회논문집
    • /
    • 제3권3호
    • /
    • pp.79-89
    • /
    • 1995
  • Rattle noise occurs at manual transmission as idling and driving of a automotive. It can be solved by torsional characteristics of a clutch disc. A clutch disc consist of a region of pre-damper and main-damper. Rattle noise is affected by pre-damper and main-damper equipped for a torsional spring and friction washer. Pre-damper range covers noise radiating from manual transmission when engine is idling and main-damper range covers noise when engine is driving. The aim of this reserch is to clear transmission rattle noise by way of torsional characteristics of a clutch disc. The experiment is carried out as idling and driving of a automobile equipped for 1.5L MPI engine, dry single-disc type clutch and manual transmission. In this study, the results show for a vibration of manual transmission as idling and driving can be cleared by a clutch disc of Pre-damper type.

  • PDF

선박용 디젤 엔진에서 Pilot 분사에 대한 연소 특성 연구 (A Study on Characteristics of Combustion with Pilot Injection in a Marine Diesel Engine)

  • 이병화;배명직;한동식;전충환;장영준;송주헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3007-3012
    • /
    • 2008
  • Multidimensional simulation has been carried out to be clear the role of initial combustion in a marine diesel engines on reduction of NOx and soot emissions by different pilot injection condition. Pilot injection can shorten the ignition delay, thus it reduces the premixed combustion phase. Since most NOx is formed during premixed combustion, pilot injections is one of reliable strategies to reduce the NOx. The formation of NOx consists of that formed by pilot injection and that formed by main injection. The result explains that 25-3-75 among the pilot injection conditions is effective to reduce the NOx, due to optimal combination pilot injection with main injection. The purpose of this study is to explain the characteristics of combustion with pilot injection of the marine diesel engine on reduction of exhaust emissions by examining the combustion process in a cylinder and to explore the formation mechanism of NOx between pilot injection and main injection.

  • PDF

선박기관실 구조의 특설늑골 설계에 대한 연구 (A Study for Web Frame Design on Engine Room Structure of Ship)

  • 박종진;강병석
    • 대한조선학회논문집
    • /
    • 제30권2호
    • /
    • pp.155-160
    • /
    • 1993
  • 본 논문은 선박 기관실의 특설늑골에 대한 치수결정 방법으로써 하나의 접근방법을 서술하였다. 특설늑골의 치수결정 인자는 실적선의 데이터를 중심으로 조사 연구되었으며, 그 구성인자로는 주로 갑판간 거리, 주기 및 프로펠러 기진 주파수, 만재흘수선, 특설늑골 배치간격, 갑판수 그리고 주기마력 등이다. 이러한 주요인자를 기초로 정하중 및 동하중이 고려된 특설 늑골 치수를 결정할 수 있는 설계식을 유도하였다. 본 논문은 기관실구조의 특설늑골의 치수를 검토할 수 있는 한 방법으로써 설계단계에서 정하중 및 동하중을 고려한 합리적인 설계가 될 수 있을 것으로 판단된다.

  • PDF

디젤유가 혼입된 엔진오일의 트라이볼로지 특성에 관한 실험적 연구 (Experimental Study on the Tribological Characteristics of Diluted Engine Oil by Diesel Fuel)

  • 김한구;김청균
    • Tribology and Lubricants
    • /
    • 제21권4호
    • /
    • pp.159-164
    • /
    • 2005
  • An experimental study was conducted to evaluate characteristic variation of diluted engine oils in which contains diesel fuels and its tribological effects on engine components. In this study, diluted engine oils with $10\%,\;15\%,\;and\;20\%$ of initial fuel content rate have been used for measuring the viscosity reduction rate, blow-by gas increment rate, main gallery pressure reduction rate, and fuel content rate in engine oils. These parameters are strongly related to the tribological characteristics of key engine components. The kinematic viscosity of engine oils in which is contained by diesel fuels from $10\%\;to\;20\%$ in oils is decreasing to approximately $54\%$ of initial diluted fuel-oil volume ratios. The experimental results show that the distillated engine oil decrease the viscosity of engine oil and its oil film stiffness, and increase the wear rate of rubbing parts of engine components. Thus we recommend that the containing volume rate of fuels in engine oils should be restricted to $3\~4\%$ for a sophisticated Diesel engine and $5\~7\%$ for a standard one.

한국형 기동헬기 엔진 (T700/701K) 인증 과정 (Qualification Process of T700/701K Engine for KUH)

  • 정용운;김재환;안이기
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.344-347
    • /
    • 2011
  • 본 논문은 한국형 기동헬기(수리온)에 탑재되는 T700/701K 터보 샤프트 엔진의 인증과정에 대해서 기술한다. T700/701K 엔진은 군용 헬기엔진으로 널리 사용되고 있는 GE사의 T700-701C/D엔진을 후방 구동형으로 개조 개발한 엔진이다. 주요 개발 내용은 크게 엔진 장착 요구조건에 의한 후방 구동형 개조, 동력터빈 성능 향상 및 엔진 운전 신뢰성 향상을 위한 2채널 FADEC 시스템 적용 등이다. 따라서 T700/701K 엔진이 수리온에 장착되어 비행을 하기 위해서 엔진 개발규격서의 요구도를 검증하여 정부의 인증을 받아야 한다. 개조 개발에 따른 영향성을 고려하여 성능을 포함한 엔진 주요 요구도는 해석과 시험을 통하여, 그리고 T700-701C/D 엔진과 동일한 부품 및 모듈에 대한 요구도는 유사성(Similarity) 해석을 통하여 검증을 수행 중이며, 2012년 상반기에 군용항공기 감항인증 절차에 따라서 인증이 될 예정이다.

  • PDF

점화시기가 LPG 엔진의 배기특성에 미치는 영향 (An effect of ignition timing on exhausting property of LPG Engine)

  • 한덕수;장영민;전봉준;김성준
    • 산업기술연구
    • /
    • 제26권A호
    • /
    • pp.39-46
    • /
    • 2006
  • As an automobile fuel, LPG has many environmental advantages compared to gasoline or diesel. However, current LPG engine which is provided with LPG fuel as gas form has lower power and worse fuel efficiency than gasoline engine. These problems of low power and bad fuel efficiency come from lower volumetric efficiency. Also there is a new rising problem of high failure ratio in an engine emission test. Although there are many factors which affect engine performance of exhaust gas emission, one believes that the fact that ECM of gasoline engine is used for LPG engine when retrofitting gasoline engine to LPG engine is one of the main problems, which lower engine power and emit more noxious gas due to wrong ignition timing. To solve these problems, one studied the effects of ignition timing on the exhaust gas to find out the optimum condition of ignition timing. The experimental results show that noxious exhaust gas is reduced and engine power is increased if the optimum control of ignition timing is applied in accordance to the revolution speed of engine.

  • PDF