• 제목/요약/키워드: Main Wing

Search Result 192, Processing Time 0.023 seconds

Investigation of crossflow features of a slender delta wing

  • Tasci, Mehmet O.;Karasu, Ilyas;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.229-240
    • /
    • 2020
  • In the present work, the main features of primary vortices and the vorticity concentrations downstream of vortex bursting in crossflow plane of a delta wing with a sweep angle of Λ=70° were investigated under the variation of the sideslip angles, β. For the pre-review of flow structures, dye visualization was conducted. In connection with a qualitative observation, a quantitative flow analysis was performed by employing Particle Image Velocimetry (PIV). The sideslip angles, β were varied with four different angles, such as 0°, 4°, 12°, and 20° while angles of attack, α were altered between 25° and 35°. This study mainly focused on the instantaneous flow features sequentially located at different crossflow planes such as x/C=0.6, 0.8 and 1.0. As a summary, time-averaged and instantaneous non-uniformity of turbulent flow structures are altered considerably resulting in non-homogeneous delta wing surface loading as a function of the sideslip angle. The vortex bursting location on the windward side of the delta wing advances towards the leading-edge point of the delta wing. The trajectory of the primary vortex on the leeward side slides towards sideways along the span of the delta wing. Besides, the uniformity of the lift coefficient, CL over the delta wing plane was severely affected due to unbalanced distribution of buffet loading over the same plane caused by the variation of the sideslip angle, β. Consequently, dissimilarities of the leading-edge vortices result in deterioration of the mean value of the lift coefficient, CL.

Simultaneous Aero-Structural Design of HALE Aircraft Wing using Multi-Objective Optimization (고고도 장기체공 항공기 날개의 다목적 최적화를 이용한 공력-구조 동시 설계)

  • Kim, Jeong-Hwa;Jun, Sang-Ook;Hur, Doe-Young;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • In this study, simultaneous aero-structural design was performed for HALE aircraft wing. The span and the shape of main spar were considered as design variables. To maximize aerodynamic performance and to minimize weight, multi-objective optimization was used. Nonlinear static aeroelastic analysis was performed to compute large deflection of wing. Design of experiment and response surface method were used to reduce computation cost in the design process. Also, aerodynamic performances of deformed wing and rigid wing were compared.

Experimental and Computational Investigation of Aerodynamic Characteristics of Hovering Coleoptera

  • Saputra, Saputra;Byun, Do-Young;Yoo, Yong-Hoon;Park, Hoon-Choel;Byun, Yong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.384-388
    • /
    • 2007
  • Aerodynamic characteristics of Coleoptera species of Epilachna quadricollis and Allomyrina dichotoma are experimentally and numerically investigated. Using digital high speed camera and smoke wire technique, we visualized the continuous wing kinematics and the flight motion of free-flying coleoptera. The experimental visualization shows that the elytra flapped concurrently with the main wing both in the downstroke and upstroke motions. The wing motion of Epilachna quadricollis was captured and analyzed frame by frame to identify the kinematics of the wings and to implement it in the movement of a model wing (thin plate) in the simulation. The two-dimensional simulation of Epilachna quadricollis hovering flight was performed by assuming the wing cross section shape as a thin plate, even though most of insect's wings are made of curved corrugated membrane. The effect of Reynolds number are investigated by the simulation. Meanwhile, in order to investigate the role and effect of elytra, the flow visualization of Allomyrina dichotoma was carried on using smoke wire visualization technique. Here, we confirmed that the vortex generated by elytra due to its movement is strongly influence the vortex dynamic generated by hind wings.

  • PDF

Three-Dimensional Flow Simulations around a Numerical Model of Wing-In-Ground(WIG) Effect Ship having the complex geometry (복잡한 해면효과익선 계산 모형 주위의 3차원 유동장의 수치계산)

  • PARK Jong-Chun;SHIN Myung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.85-92
    • /
    • 1996
  • Numerical simulations are made for the three-dimensional flow around a wing in ground effect craft haying the complex geometry. A numerical tool is developed for the primary design of hull and wing shape of practical Wing-In-Ground effect(WIG) stop. The finite-difference method is utilized to descretize the governing equations and pressure field is obtained by using Marker-And-Cell(MAC) method. The air and water flows are simultaneously simulated in the time-marching solution procedure for the Navier-Stokes equation. The porosity technique and the density function are devised for the implementation of the three-dimensional body-boundary and the free-surface conditions, respectively. In this paper, a craft is modeled simply by three blocks containing a wing mounted on a main body horizontally, with the endplate. The numerical calculations of a WIG advancing in a calm water are performed and the WIG-generated wave profiles are also obtained. In the final paper, details of the numerical methods employed for the present study and calculated results are discussed.

  • PDF

A Study on Steady-state Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.177-182
    • /
    • 2003
  • In this study, a performance model of the Smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as welt as the fixed wing mode for high speed forward flight, has been newly developed. With the proposed model, steady-state performance analysis was performed at various flight modes and conditions, such as rotary wing mode, fixed wing mode, compound wing, mode altitude and flight speed. In investigation of performance analysis, it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case has much greater than that with the flight speed variation case.

  • PDF

Non-linear Structural Analysis of Main Wing Spar of High Altitude Long Endurance UAV (고고도 장기체공무인기 주익 Spar 비선형 구조 해석)

  • Park, Sang-Wook;Shin, Jeong-Woo;Lee, Mu-Hyoung;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In order to increase endurance flight efficiency of long endurance electric powered UAV, main wing of UAV should have high aspect ratio and low structural weight. Since a spar which consists of thin and slender structure for weight reduction can cause catastrophic failure during the flight, it is important to develop verification method of structural integrity of the spar with the light weight design. In this paper, process of structural analysis using non-linear finite element method was introduced for the verification of structural integrity of the spar. The static strength test of the spar was conducted to identify structural characteristic under the static load. Then, the experimental result of the spar was compared to the analytical result from the non-linear finite element analysis. It was found that the developed process of structural analysis could predict well the non-linear structural behavior of the spar under ultimate load.

A Study on Conceptual Structural Design for the Composite Wing of A Small Scale WIG Flight Vehicle (소형 WIG선의 복합재 주날개 구조 개념 설계에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il;Kang, Kuk-Jin;Park, Mi-Young
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.179-184
    • /
    • 2005
  • In the present study, conceptual design of the main wing for 20 seats WIG{wing in Ground Effect) flight vehicle, which will be a high speed maritime transportation system for the next generation, was performed. The high stiffness and strength Carbon-Epoxy material was used for the major structure and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for this study, firstly the design load was estimated with maximum flight load, and then flanges of the front and the rear spar from major bending load and the skin structure and the webs of the spars were preliminarily sized using the netting rules and the rule of mixture. In order to investigate the structural safety and stability, stress analysis was performed by Finite Element Codes such as NASTRAN/PA TRAN[6] and NISA II [7]. From the stress analysis results, it was confirmed that the upper skin structure between the front spar and rear spar was very unstable for the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich structure at the upper skin and the web were added. After design modification, even thought the designed wing weight was a little bit heavier than the target wing weight, the structural safety and stability of the final design feature was confirmed. Moreover, in order to fix the wing structure at the fuselage, the insert bolt type structure with six high strength bolts was adopted for easy assembly and removal.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

A Study of the Effects of Hard Landing on Aircraft Structure (Hard Landing이 항공기 구조물에 미치는 영향성 연구)

  • Oh, Yong-Kyu;Sim, Sang-Ki;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.805-811
    • /
    • 2011
  • Aircraft MLG and wing structures have been recognized as fatigue critical structures and exposed to the risk of fatigue crack initiation and propagation. Furthermore, these structures are frequently subjected to serious dynamic loading condition during a Hard Landing which may lead to their failure. Especially, structural integrity of MLG and wing components is decreased as the flight time increased because of the fatigue damage accumulated on the aircraft. In this study, the effects of Hard Landing on the MLG and wing components of aging aircraft were evaluated by using numerical approach. To achieve the aim, a finite element model has been developed and simulations were conducted by varying the landing conditions. As a result, it was revealed that the high stress concentration phenomenon was occurred at the lower Side Brace of MLG. Thereby, the intensified inspection for the lower Side Brace should be considered to prevent unexpected aircraft mishap.

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.