• Title/Summary/Keyword: Main Memory

Search Result 757, Processing Time 0.035 seconds

Hybrid in-memory storage for cloud infrastructure

  • Kim, Dae Won;Kim, Sun Wook;Oh, Soo Cheol
    • Journal of Internet Computing and Services
    • /
    • v.22 no.5
    • /
    • pp.57-67
    • /
    • 2021
  • Modern cloud computing is rapidly changing from traditional hypervisor-based virtual machines to container-based cloud-native environments. Due to limitations in I/O performance required for both virtual machines and containers, the use of high-speed storage (SSD, NVMe, etc.) is increasing, and in-memory computing using main memory is also emerging. Running a virtual environment on main memory gives better performance compared to other storage arrays. However, RAM used as main memory is expensive and due to its volatile characteristics, data is lost when the system goes down. Therefore, additional work is required to run the virtual environment in main memory. In this paper, we propose a hybrid in-memory storage that combines a block storage such as a high-speed SSD with main memory to safely operate virtual machines and containers on main memory. In addition, the proposed storage showed 6 times faster write speed and 42 times faster read operation compared to regular disks for virtual machines, and showed the average 12% improvement of container's performance tests.

PCM Main Memory for Low Power Embedded System (저전력 내장형 시스템을 위한 PCM 메인 메모리)

  • Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.391-397
    • /
    • 2015
  • Nonvolatile memories in memory hierarchy have been investigated to reduce its energy consumption because nonvolatile memories consume zero leakage power in memory cells. One of the difficulties is, however, that the endurance of most nonvolatile memory technologies is much shorter than the conventional SRAM and DRAM technology. This has limited its usage to only the low levels of a memory hierarchy, e.g., disks, that is far from the CPU. In this paper, we study the use of a new type of nonvolatile memories - the Phase Change Memory (PCM) with a DRAM buffer system as the main memory. Our design reduced the total energy of a DRAM main memory of the same capacity by 80%. These results indicate that it is feasible to use PCM technology in place of DRAM in the main memory for better energy efficiency.

A Study on the Performance Evaluation of Application Transaction in the Main Memory DBMS (메모리 상주 DBMS에서의 응용 트랜잭션 성능평가에 관한 연구)

  • Kim, Hee Wan;Rhee, Hae Kyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.19-26
    • /
    • 2009
  • Recently, the Main Memory DBMS is gradually being expanded by the appearance of a large capacity of a Main Memory System, the increase in business area where it requires a real time process, and the rise of the users' required level. The Main Memory DBMS, which is able to go through a large capacity data process of the disk-based DBMS and guarantees a high efficiency, has domestically developed and has been put to a practical use. This paper presents an examination of the applied technologies and the limits of Altibase system, which is Main Memory DBMS. Moreover, it evaluated and performed a comparative analysis on the performance level of the Main Memory DBMS and the disk-based DBMS based on the same application. After five trials of the experiment based on the operating application, it was confirmed that the performance level of the Main Memory DBMS is enhanced and is higher by 4.13 to 7.89 times than the disk-based DBMS.

Recovery Methods in Main Memory DBMS

  • Kim, Jeong-Joon;Kang, Jeong-Jin;Lee, Ki-Young
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.26-29
    • /
    • 2012
  • Recently, to efficiently support the real-time requirements of RTLS( Real Time Location System) services, interest in the main memory DBMS is rising. In the main memory DBMS, because all data can be lost when the system failure happens, the recovery method is very important for the stability of the database. Especially, disk I/O in executing the log and the checkpoint becomes the bottleneck of letting down the total system performance. Therefore, it is urgently necessary to research about the recovery method to reduce disk I/O in the main memory DBMS. Therefore, In this paper, we analyzed existing log techniques and check point techniques and existing main memory DBMSs' recovery techniques for recovery techniques research for main memory DBMS.

Page Replacement Algorithm for Improving Performance of Hybrid Main Memory (하이브리드 메인 메모리의 성능 향상을 위한 페이지 교체 기법)

  • Lee, Minhoe;Kang, Dong Hyun;Kim, Junghoon;Eom, Young Ik
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.88-93
    • /
    • 2015
  • In modern computer systems, DRAM is commonly used as main memory due to its low read/write latency and high endurance. However, DRAM is volatile memory that requires periodic power supply (i.e., memory refresh) to sustain the data stored in it. On the other hand, PCM is a promising candidate for replacement of DRAM because it is non-volatile memory, which could sustain the stored data without memory refresh. PCM is also available for byte-addressable access and in-place update. However, PCM is unsuitable for using main memory of a computer system because it has two limitations: high read/write latency and low endurance. To take the advantage of both DRAM and PCM, a hybrid main memory, which consists of DRAM and PCM, has been suggested and actively studied. In this paper, we propose a novel page replacement algorithm for hybrid main memory. To cope with the weaknesses of PCM, our scheme focuses on reducing the number of PCM writes in the hybrid main memory. Experimental results shows that our proposed page replacement algorithm reduces the number of PCM writes by up to 80.5% compared with the other page replacement algorithms.

Problem Analysis and Recommendations of Memory Contents in High School Informatics Textbooks (고등학교 정보 교과서에 제시된 기억 장치 영역 내용의 문제점 분석 및 개선 방안)

  • Lee, Sang-Wook;Suh, Tae-Weon
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.3
    • /
    • pp.37-47
    • /
    • 2012
  • One of the major goals in high school Informatics is for students to develop creative problem-solving abilities based on knowledge on computer science. Thus, the contents of the textbooks should be accurate and appropriate. However, we discovered that the current Informatics textbooks contain the untrue and/or inappropriate descriptions of main memory and virtual memory. The textbooks describe that main memory is composed of RAM and ROM. The virtual memory is described as a technique in which a part of the secondary storage is utilized as main memory to execute an application of which size is larger than that of main memory. In this study, we attempted to uncover the root causes of the fallacies, and suggest the accurate explanations by comparing with renowned books adopted in most schools worldwide including USA. Our study reveals that it is inappropriate to include ROM in main memory from the memory hierarchy perspective. Virtual memory is a technique that provides convenience to programmers, through which an operating system loads the necessary portion of a program from secondary storage to main memory. As for the advantages of virtual memory in the current computer systems, the focus should be on providing the effective multitasking capability, rather than on executing a larger program than the size of main memory. We suggest that it is appropriate to exclude virtual memory in textbooks considering its complexity.

  • PDF

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.

Design of Memory-Resident GIS Database Systems

  • Lee, J. H.;Nam, K.W.;Lee, S.H.;Park, J.H.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.499-501
    • /
    • 2003
  • As semiconductor memory becomes cheaper, the memory capacity of computer system is increasing. Therefore computer system has sufficient memory for a plentiful spatial data. With emerging spatial application required high performance, this paper presents a GIS database system in main memory. Memory residence can provide both functionality and performance for a database management system. This paper describes design of DBMS for storing, querying, managing and analyzing for spatial and non-spatial data in main-memory. This memory resident GIS DBMS supports SQL for spatial query, spatial data model, spatial index and interface for GIS tool or applications.

  • PDF

Application Performance Evaluation in Main Memory Database System (메인메모리 데이터베이스시스템에서의 어플리케이션 성능 평가)

  • Kim, Hee-Wan;Ahn, Yeon S.
    • Journal of Digital Contents Society
    • /
    • v.15 no.5
    • /
    • pp.631-642
    • /
    • 2014
  • The main memory DBMS is operated which the contents of the table that resides on a disk at the same time as the drive is in the memory. However, because the main memory DBMS stores the data and transaction log file using the disk file system, there are a limit to the speed at which the CPU accesses the memory. In this paper, I evaluated the performance through analysis of the application side difference the technology that has been implemented in Altibase system of main memory DBMS and Sybase of disk-based DBMS. When the application performance of main memory DBMS is in comparison with the disk-based DBMS, the performance of main memory DBMS was outperformed 1.24~3.36 times in the single soccer game, and was outperformed 1.29~7.9 times in the soccer game / special soccer. The result of sale transaction response time showed a fast response time of 1.78 ~ 6.09 times.

Design and Implementation of a Main-memory Storage System for Real-time Retrievals (실시간 검색을 위한 다중 사용자용 주기억장치 자료저장 시스템 개발)

  • Kwon, Oh-Su;Hong, Dong-Kweon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.187-194
    • /
    • 2003
  • Main Memory storage system can increase the performance of the system by assigning enough slack time to real-time transactions. Due to its high response time of main memory devices, main memory resident data management systems have been used for location management of personal mobile clients to cope with urgent location related operations. In this paper we have developed a multi-threaded main memory storage system as a core component of real-time retrieval system to handle a huge amount of readers and writers of main memory resident data. The storage system is implemented as an embedded component which is working with the help of a disk resident database system. It uses multi-threaded executions and utilizes latches for its concurrency control rather than complex locking method. It only saves most recent data on main memory and data synchronization is done only when disk resident database asks for update transactions. The system controls the number of read threads and update threads to guarantee the minimum requirements of real-time retrievals.