• Title/Summary/Keyword: Main Failure Mode

Search Result 228, Processing Time 0.024 seconds

A magnetic bearing capacity due to unbalance mass in a flywheel energy storage system (자기베어링을 이용한 플라이휠 에너지 저장 시스템의 불평형 질량에 의한 베어링의 동적 부하 용량)

  • Kim, Bong-Soo;Bae, Yong-Chae;Lee, Wook-Ryun;Kim, Hee-Soo;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.176-181
    • /
    • 2009
  • In this article, excitation forces due to unbalance mass in a flywheel energy storage system will be discussed, which mainly consists of a composite flywheel and active magnetic bearings and a motor/generator. Unbalance mass causes moments as well as centrifugal forces to the center of the flywheel when the flywheel rotates. The moment excites the flywheel to revolve in the shape of conical revolution and in real operation, the flywheel shows an aspect that conical revolution is a main mode when system failure occurs. Although there are several excitation sources to the flywheel including unbalance mass, an excitation from motor and control issues of the magnetic bearings, we could infer unbalance mass is the main cause of the failure from a comparison between a composite flywheel and a steel flywheel in the same condition. In this of view, excitation forces and moments induced by unbalance mass should be carefully considered in dynamics of the flywheel so that the energy storage system can be operated in more stable conditions.

  • PDF

The Critical Speed Analysis of the Differential Planetary Gear Train of a Concrete Mixer Truck Mixer Reducer (콘크리트 믹서 트럭용 믹서 감속기의 차동 유성 기어 트레인에 대한 위험속도 해석)

  • Bae, Myung Ho;Bae, Tae Yeol;Kim, Dang Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • The power train of a concrete truck mixer reducer includes differential planetary gears to get a large reduction ratio for operating the mixer drum in a compact structure. These differential planetary gears are a very important part of the mixer reducer where strength problems are the main concern. Gear bending stress, gear compressive stress and scoring failure are the main concerns. Many failures in differential planetary gears are due to the insufficient gear strength and resonance problems caused by major excitation forces such as gear mating failure in the transmission. In the present study, where the excitation frequencies are the gear tooth passing frequencies of the mating gears, a Campbell diagram is used to calculate differential planetary gear critical speeds. Mode shapes and natural frequencies of the differential planetary gears are calculated by CATIA V5. These are used to predict gear resonance failures by comparing the working speed range with the critical speeds due to the gear transmission errors of the differential planetary gears.

Reliability Analysis of the Spur Gear with Accelerated Life Testing Model (가속수명시험 모델에 따른 평기어의 신뢰성 해석)

  • Kim, Chul-Su;Kwon, Yeo-Hyoun;Kim, Joo-Hyung;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.136-141
    • /
    • 2004
  • The gear in various mechanical components easily occurs at damages by the external torque. The main failure modes of the gear are surface pitting with the tooth surface and breakage with tooth root by caused fatigue. Therefore, the gear is very important role in the reliability research since it may cause fatal damage of entire system such as the gear box in automobile transmission. In this study, the failure mode of the gear was analyzed and accelerated durability analysis was employed for the life estimation of spur gears. In the case of assumed load spectrums, the reliability of spur gears was evaluated by inverse power law-Weibull accelerated life test model with cumulative damage exposure.

  • PDF

Shear Strength of Prestressed Steel Fiber Concrete I-Beams

  • Tadepalli, Padmanabha Rao;Dhonde, Hemant B.;Mo, Y.L.;Hsu, Thomas T.C.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.267-281
    • /
    • 2015
  • Six full-scale prestressed concrete (PC) I-beams with steel fibers were tested to failure in this work. Beams were cast without any traditional transverse steel reinforcement. The main objective of the study was to determine the effects of two variables-the shear-span-to-depth ratio and steel fiber dosage, on the web-shear and flexural-shear modes of beam failure. The beams were subjected to concentrated vertical loads up to their maximum shear or moment capacity using four hydraulic actuators in load and displacement control mode. During the load tests, vertical deflections and displacements at several critical points on the web in the end zone of the beams were measured. From the load tests, it was observed that the shear capacities of the beams increased significantly due to the addition of steel fibers in concrete. Complete replacement of traditional shear reinforcement with steel fibers also increased the ductility and energy dissipation capacity of the PC I-beams.

Effects of different roll angles on civil aircraft fuselage crashworthiness

  • Mou, Haolei;Du, Yuejuan;Zou, Tianchun
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.4
    • /
    • pp.391-401
    • /
    • 2015
  • Crashworthiness design and certification have been and will continue to be the main concern in aviation safety. The effects of roll angles on fuselage section crashworthiness for typical civil transport category aircrafts were investigated. A fuselage section with waved-plates under cargo floor is suggested, and the finite element model of fuselage section is developed to simulate drop test subjected to 7 m/s impact velocity under conditions of 0-deg, 5-deg, 10-deg and 15-deg roll angles, respectively. A comparative analysis of failure modes, acceleration responses, and energy absorption of fuselage section under various conditions are given. The results show that the change of roll angles will significantly affect fuselage deformation, seat peak overloads, and energy absorption. The crashworthiness capability of aircraft can be effectively improved by choosing appropriate landing way.

Stress and Stress Voiding in Cu/Low-k Interconnects

  • Paik, Jong-Min;Park, Hyun;Joo, Young-Chang
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.3
    • /
    • pp.114-121
    • /
    • 2003
  • Through comparing stress state of TEOS and SiLK-embedded structures, the effect of low-k materials on stress and stress distribution in via-line structures were investigated using three-dimensional finite element analyses. In the case of TEOS-embedded via-line structures, hydrostatic stress was concentrated at the via and the top of the lines, where the void was suspected to nucleate. On the other hand, in the via-line structures integrated with SiLK, large von-Mises stress is maintained at the via, thus deformation of via is expected as the main failure mode. A good correlation between the calculated results and experimentally observed failure modes according to dielectric materials was obtained.

Structural Performance of Flexural Members Enlarged with Epoxy Mortar System at Soffit (변형에폭시계 재료를 사용한 하부증대 보의 구조적 성능)

  • 홍건호;조하나;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.833-838
    • /
    • 1998
  • This paper is aimed to investigate structural performance of flexural members enlarged with epoxy mortar at soffit. Main test variables are steel ratio and interface treatment method and six test beams are tested to investigate the effect of each test variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. Test results show that section enlarged beams can carry almost same load of the monolithic beams with same size and the flexural stiffness and cracking moments are increased about 2.5 times and 50 to 70%of failure moment in comparison with same sized control beam, respectively. However, deflections and curvatures are decreased at the same load and interface fractures are not discovered at the ultimate load.

  • PDF

Design Method for Stability in Cut-Slope under heavy rainfall (집중호우를 고려한 절토사면의 안정성 확보를 위한 설계방안)

  • 이풍희;김종흔;전경수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.16-26
    • /
    • 2002
  • As the slope designs had simply followed some slope guidelines during 1960's∼1970's, of which the main purpose was to estimate earth work quantities in the feasibility stage, slope failures had been experienced in Korea Highways. Various site investigation methods for highway cut-slopes have been continuously developed, and major cut-slope failures caused by slope instability have rapidly reduced. The failure mode of recent cut-slope failures in highways during typhoon RUSA No.15. featured a debris flow in soil mass activated by flowing water. The study of the surface soil scour and the debris flow caused by heavy rainfall must be done to protect the cut-slope failures in the future

  • PDF

Bending-shear Strength of Concrete-filled Double Skin Circular Steel Tubular Beams with SMA and Rebar in Normal-and-High-strength Concrete

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • A concrete-filled circular steel tube beam was fabricated, and a bending test was performed to analyze its failure modes, displacement ductility, bending-shear strength, and load-central deflection relationship. For the bending test, the installation position of the shape memory alloy (SMA) inside and outside the double-skin steel tube was used, and the rebar installation position, the concrete strength, the mixing of fibers, and the inner-outer diameter ratio as the main parameters. The test results showed that the installation positions of the reinforcements inside and outside the double-skin steel tube and the inner-outer diameter ratio of the steel tube affected the ductility, maximum load, and failure mode. In general, the specimen made of general concrete with SMA installed outside and inside (OI) the double-skin steel tube showed the best results.

Failure Mode Analysis and Friction Material Development of the KTX tread Brake (고속철도 제륜자 결함분석 및 제륜자 개발)

  • Baek, Jong-Kil;Goo, Byeong-Choon;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • The shoe brake of the KTX is used in low speed when the electric brake is not effective. The main purpose of the shoe brake is to stop the train to a desired stop point at the station. Lots of defects have been encountered in the shoe brake unit since the KTX started its operation. To improve the reliability of shoe brake unit of the KTX power car, first of all, failure modes of the KTX shoe brake unit were analyzed. Main failure modes are cracks in the shoe friction material and fracture in the welded joints of the shoe backing steel structure. Several methods to remove the defects of the shoe brake unit were proposed and on-board tests were carried out: Increase of the strength of the shoe key and shoe cam, which decreased a little the occurrence of cracks in the shoe friction material; Redesign of the shoe backing steel structure, which eliminated the occurrence of the cracks in the backing plate but could not solve completely the crack problem in the shoe friction material; Development of a new friction material, which with redesign of the shoe backing steel structure could solve satisfactorily the crack problem in the shoe friction material.