• Title/Summary/Keyword: Main Axis

Search Result 537, Processing Time 0.03 seconds

A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD (CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구)

  • Kim Beom-Seok;Kim Jeong-Hwan;Nam Chung-Do;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

Visual Analysis on the Arrangement of the East and West Stone Pagodas of Five Stories in Hwaeomsa (지리산(智異山) 남록(南麓)의 산지가람(山地伽藍)인 화엄사(華嚴寺) 동·서 5층 석탑의 배치(配置)에 대한 시각적(視覺的) 분석(分析))

  • Jang, Hyeonseok;Choi, Hyoseung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.3
    • /
    • pp.109-118
    • /
    • 2005
  • This study is to find out the plan intention of the central space through visual analysis on the east and west stone pagodas relative to a main Buddhist hall, and the relation between the stone pagodas in Hwaeomsa.(華嚴寺) According to the analysis of it in this study, we make conclusions as follows; 1) The east and west stone pagodas was arranged with overlapping each Daeungjeon(大雄殿) and Gakhwangjeon(覺皇殿) for the view of a specific viewpoint, on the right of Bojeru(普濟樓). 2) The centering around a compositive axis which connect Gakhwangjeon, stone lantern, and stairs, the axis of two stone pagodas is not coincident. 3) Courtyard in Hwaeomsa is separated by high a stone wall for reinforcement, but it is integrated into visual perception owing to height of two stone pagodas connected visual line to Daeungjeon and Gakhwangjeon.

  • PDF

Selection of Main Factors by Experimental Analysis for Profile Blast Machining Based on Microparticle Blasting Equipment with a Two-Axis Sequence Control Stage (2축 시퀀스 제어 스테이지와 미세입자 분사장치에 의한 형상 분사가공시 실험계획법에 의한 주요인자 검출)

  • Hwang, Chul-Woong;Lee, Sea-Han;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.64-69
    • /
    • 2020
  • To determine the effective factors for microparticle blasting with precise sequence position control in the x-axis and y-axis directions, we conducted a statistical experimental analysis of blasted square shapes by considering five condition factors. The control input and output were operated simultaneously by rotation-linear motion conversion and fine particles were blasted onto the aluminum specimen by precise position control driving using multiple execution codes. The micro-driving device used for processing was capable of microparticle blasting and of controlling the system through contact with a limit sensor at high speed and a two-degree-of-freedom driving mechanism. Our experiments were conducted on 1,050 specimens of pure aluminum (containing <1% of other elements). The effects of several factors (e.g., particle and nozzle diameters, blasting pressure, and federate and blasting cycle numbers) on the surface roughness and blasted surface's depth were verified through a statistical experimental analysis by applying the dispersion analysis method. This statistical analysis revealed that the nozzle diameter, the blasting pressure, and the blasting cycle number were the dominant factors.

Experimental determination of the resistance of a single-axis solar tracker to torsional galloping

  • Martinez-Garcia, Eva;Marigorta, Eduardo Blanco;Gayo, Jorge Parrondo;Navarro-Manso, Antonio
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.519-528
    • /
    • 2021
  • One of the most efficient designs of solar trackers for photovoltaic panels is the single-axis tracker, which holds the panels along a torque tube that is driven by a motor at the central section. These trackers have evolved to become extremely slender structures due to mechanical optimization against static load and the need of cost reduction in a very competitive market. Owing to the corresponding decrease in mechanical resistance, some of these trackers have suffered aeroelastic instability even at moderate wind speeds, leading to catastrophic failures. In the present work, an analytical and experimental approach has been developed to study that phenomenon. The analytical study has led to identify the dimensionless parameters that govern the motion of the panel-tracker structure. Also, systematic wind tunnel experiments have been carried out on a 3D aeroelastic scale model. The tests have been successful in reproducing the aeroelastic phenomena arising in real-scale cases and have allowed the identification and a close characterization of the phenomenon. The main results have been the determination of the critical velocity for torsional galloping as a function of tilt angle and a calculation methodology for the optimal sizing of solar tracker shafts.

Gut-Brain Connection: Microbiome, Gut Barrier, and Environmental Sensors

  • Min-Gyu Gwak;Sun-Young Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.3
    • /
    • pp.20.1-20.18
    • /
    • 2021
  • The gut is an important organ with digestive and immune regulatory function which consistently harbors microbiome ecosystem. The gut microbiome cooperates with the host to regulate the development and function of the immune, metabolic, and nervous systems. It can influence disease processes in the gut as well as extra-intestinal organs, including the brain. The gut closely connects with the central nervous system through dynamic bidirectional communication along the gut-brain axis. The connection between gut environment and brain may affect host mood and behaviors. Disruptions in microbial communities have been implicated in several neurological disorders. A link between the gut microbiota and the brain has long been described, but recent studies have started to reveal the underlying mechanism of the impact of the gut microbiota and gut barrier integrity on the brain and behavior. Here, we summarized the gut barrier environment and the 4 main gut-brain axis pathways. We focused on the important function of gut barrier on neurological diseases such as stress responses and ischemic stroke. Finally, we described the impact of representative environmental sensors generated by gut bacteria on acute neurological disease via the gut-brain axis.

Image Color, Brightness, Saturation Similarity Validation Study of Emotion Computing (이미지 색상, 명도, 채도 감성컴퓨팅의 유사성 검증 연구)

  • Lee, Yean-Ran
    • Cartoon and Animation Studies
    • /
    • s.40
    • /
    • pp.477-496
    • /
    • 2015
  • Emotional awareness is the image of a person is represented by different tendencies. Currently, the emotion computing to objectively evaluate the emotion recognition research is being actively studied. However, existing emotional computing research has many problems to run. First, the non-objective in emotion recognition if it is inaccurate. Second, the correlation between the emotion recognition is unclear points. So to test the regularity of image sensitivity to the need of the present study is to control emotions in the computing system. In addition, the screen number of the emotion recognized for the purpose of this study, applying the method of objective image emotional computing system and compared with a similar degree of emotion of the person. The key features of the image emotional computing system calculates the emotion recognized as numbered digital form. And to study the background of emotion computing is a key advantage of the effect of the James A. Russell for digitization of emotion (Core Affect). Pleasure emotions about the core axis (X axis) of pleasure and displeasure, tension (Y-axis) axis of tension and relaxation of emotion, emotion is applied to the computing research. Emotional axis with associated representative sensibility very happy, excited, elated, happy, contentment, calm, relaxing, quiet, tired, helpless, depressed, sad, angry, stress, anxiety, pieces 16 of tense emotional separated by a sensibility ComputingIt applies. Course of the present study is to use the color of the color key elements of the image computing formula sensitivity, brightness, and saturation applied to the sensitivity property elements. Property and calculating the rate sensitivity factors are applied to the importance weight, measured by free-level sensitivity score (X-axis) and the tension (Y-axis). Emotion won again expanded on the basis of emotion crossed point, and included a representative selection in Sensibility size of the top five ranking representative of the main emotion. In addition, measuring the emotional image of a person with 16 representative emotional score, and separated by a representative of the top five senses. Compare the main representative of the main representatives of Emotion and Sensibility people aware of the sensitivity of the results to verify the similarity degree computing emotion emotional emotions depending on the number of representative matches. The emotional similarity computing results represent the average concordance rate of major sensitivity was 51%, representing 2.5 sensibilities were consistent with the person's emotion recognition. Similar measures were the degree of emotion computing calculation and emotion recognition in this study who were given the objective criteria of the sensitivity calculation. Future research will need to be maintained weight room and the study of the emotional equation of a higher concordance rate improved.

SPACE SOLAR TELESCOPE

  • AI GUOXIANG
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.415-418
    • /
    • 1996
  • Space Solar Telescope (SST) is a space project for solar research, its main parameters are that total weight 2.0T, sun synchronous polar circular orbit, altitude of the orbit 730KM, 3 axis stabilized attitude system, power 1200W, telemetry of the downlink rate 30Mb/s, size $5{\ast}2{\ast}2\;M^3$, mission life 3 years. It is expected it will be launched in 2001 or later. The main objective is structure and evolution of solar vector magnetic field with very high spatial resolution. The payloads are consisted of 6 instruments: Main optical telescope with 1-M diameter and diffraction limited resolution 0.1 arc second, EUV imaging telescope with a bundle of four telescopes and 0.5 arc second resolution, spectrometric optical coronagraph, wide band spectrometer, H-alpha and white light telescope and solar and interplanetary radiospectrometer. An assessment study between China and Germany is under operation.

  • PDF

Development of Main Spindle and Waterproof System for Underwater Milling Operation (수중 밀링 가공을 위한 주축 및 방수장치의 개발)

  • 이동규;이기용;이용범;이근우;박진호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1158-1161
    • /
    • 2003
  • For underwater milling of parts of nuclear reactor, a waterproof main spindle system was developed. which used a servo meter. Particularly, a waterproof system is available to cope with emergencies such as an electricity failure so that it prevents hazards from cutting radioactive materials. A developed spindle was designed to be capable of horizontal and vertical cutting and structural analysis was conducted with a FEM tool(Design Space) when the forces were loaded in each axis-direction.

  • PDF

Study on the noise reduction occurred to rotation in duct (덕트 회전체에서 발생하는 소음저감에 대한 연구)

  • Park, Hong-Ul;Kim, You-Jae;Park, Sung-Kwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.875-879
    • /
    • 2006
  • Noise reduction has become a major issue of the duct air-conditioners. This paper describes the reduction of noise and vibration of rotational slim duct system. The design of slim duct system is the most important point of noise reduction in terms of the motor of 2f line noise, resonance noise between forced frequency and natural frequency of Sirocco fan, unbalance noise of motor axis and the noise induced refrigerant. The noise of duct system is mainly measured from diffuser and bottom of duct. The optimal design was implemented after measuring the effect of noise and vibration in each part which is composed of duct system. In this paper, experimental results show that the main elements in air-conditioner duct design. These elements are anti-vibration rubber of motor, axis length of motor, rubber coupler, materials of sirocco fan and control method of motor which are the most vital factors in reducing noise.

  • PDF

Development of Multi-axis Nano Positioning Stage for Optical Alignment (광소자 정렬용 극초정밀 다축 위치 제어장치 개발)

  • 정상화;이경형;차경래;김현욱;최석봉;김광호;박준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.304-307
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF