• Title/Summary/Keyword: Mahalanobis-Distance

Search Result 160, Processing Time 0.02 seconds

Underwater Navigation of AUVs Using Uncorrelated Measurement Error Model of USBL

  • Lee, Pan-Mook;Park, Jin-Yeong;Baek, Hyuk;Kim, Sea-Moon;Jun, Bong-Huan;Kim, Ho-Sung;Lee, Phil-Yeob
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.340-352
    • /
    • 2022
  • This article presents a modeling method for the uncorrelated measurement error of the ultra-short baseline (USBL) acoustic positioning system for aiding navigation of underwater vehicles. The Mahalanobis distance (MD) and principal component analysis are applied to decorrelate the errors of USBL measurements, which are correlated in the x- and y-directions and vary according to the relative direction and distance between a reference station and the underwater vehicles. The proposed method can decouple the radial-direction error and angular direction error from each USBL measurement, where the former and latter are independent and dependent, respectively, of the distance between the reference station and the vehicle. With the decorrelation of the USBL errors along the trajectory of the vehicles in every time step, the proposed method can reduce the threshold of the outlier decision level. To demonstrate the effectiveness of the proposed method, simulation studies were performed with motion data obtained from a field experiment involving an autonomous underwater vehicle and USBL signals generated numerically by matching the specifications of a specific USBL with the data of a global positioning system. The simulations indicated that the navigation system is more robust in rejecting outliers of the USBL measurements than conventional ones. In addition, it was shown that the erroneous estimation of the navigation system after a long USBL blackout can converge to the true states using the MD of the USBL measurements. The navigation systems using the uncorrelated error model of the USBL, therefore, can effectively eliminate USBL outliers without loss of uncontaminated signals.

Development of a Target Detection Algorithm using Spectral Pattern Observed from Hyperspectral Imagery (초분광영상의 분광반사 패턴을 이용한 표적탐지 알고리즘 개발)

  • Shin, Jung-Il;Lee, Kyu-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1073-1080
    • /
    • 2011
  • In this study, a target detection algorithm was proposed for using hyperspectral imagery. The proposed algorithm is designed to have minimal processing time, low false alarm rate, and flexible threshold selection. The target detection procedure can be divided into two steps. Initially, candidates of target pixel are extracted using matching ratio of spectral pattern that can be calculated by spectral derivation. Secondly, spectral distance is computed only for those candidates using Euclidean distance. The proposed two-step method showed lower false alarm rate than the Euclidean distance detector applied over the whole image. It also showed much lower processing time as compared to the Mahalanobis distance detector.

High-Reliable Classification of Multiple Induction Motor Faults using Robust Vibration Signatures in Noisy Environments based on a LPC Analysis and an EM Algorithm (LPC 분석 기법 및 EM 알고리즘 기반 잡음 환경에 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Kang, Myeongsu;Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.21-30
    • /
    • 2014
  • The use of induction motors has been recently increasing in a variety of industrial sites, and they play a significant role. This has motivated that many researchers have studied on developing fault detection and classification systems of induction motors in order to reduce economical damage caused by their faults. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results show that the proposed approach yields higher classification accuracies than the state-of-the-art conventional approach for both noiseless and noisy environments for identifying the induction motor faults.

An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant

  • Peng, Min-jun;Wang, Hang;Chen, Shan-shan;Xia, Geng-lei;Liu, Yong-kuo;Yang, Xu;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.396-410
    • /
    • 2018
  • To assist operators to properly assess the current situation of the plant, accurate fault diagnosis methodology should be available and used. A reliable fault diagnosis method is beneficial for the safety of nuclear power plants. The major idea proposed in this work is integrating the merits of different fault diagnosis methodologies to offset their obvious disadvantages and enhance the accuracy and credibility of on-line fault diagnosis. This methodology uses the principle component analysis-based model and multi-flow model to diagnose fault type. To ensure the accuracy of results from the multi-flow model, a mechanical simulation model is implemented to do the quantitative calculation. More significantly, mechanism simulation is implemented to provide training data with fault signatures. Furthermore, one of the distance formulas in similarity measurement-Mahalanobis distance-is applied for on-line failure degree evaluation. The performance of this methodology was evaluated by applying it to the reactor coolant system of a pressurized water reactor. The results of simulation analysis show the effectiveness and accuracy of this methodology, leading to better confidence of it being integrated as a part of the computerized operator support system to assist operators in decision-making.

Fault Detection Method for Multivariate Process using Mahalanobis Distance and ICA (마할라노비스 거리와 독립성분분석을 이용한 다변량 공정 고장탐지 방법에 관한 연구)

  • Jung, Seunghwan;Kim, Sungshin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Multivariate processes, such as chemical and mechanical process, power plants are operated in a state where several facilities are complexly connected, the fault of a particular system can also have fatal consequences for the entire process. In addition, since process data is measured in an unstable environment, outlier is likely to be include in the data. Therefore, monitoring technology is essential, which can remove outlier from measured data and detect failures in advance. In this paper, data obtained from dynamic and multivariate process models was used to detect fault in various type of processes. The dynamic process is a simulation of a process with autoregressive property, and the multivariate process is a model that describes a situation when a specific sensor fault. Mahalanobis distance was used to remove outlier contained in the data generated by dynamic process model and multivariate process model, and fault detection was performed using ICA. For comparison, we compared performance with and a conventional single ICA method. The proposed fault detection method improves performance by 0.84%p for bias data and 6.82%p for drift data in the dynamic process. In the case of the multivariate process, the performance was improves by 3.78%p, therefore, the proposed method showed better fault detection performance.

Optimization of Sensor Location for Real-Time Damage assessment of Cable in the cable-Stayed Bridge (사장교 케이블의 실시간 손상평가를 위한 센서 배치의 최적화)

  • Geon-Hyeok Bang;Gwang-Hee Heo;Jae-Hoon Lee;Yu-Jae Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.172-181
    • /
    • 2023
  • In this study, real-time damage evaluation of cable-stayed bridges was conducted for cable damage. ICP type acceleration sensors were used for real-time damage assessment of cable-stayed bridges, and Kinetic Energy Optimization Techniques (KEOT) were used to select the optimal conditions for the location and quantity of the sensors. When a structure vibrates by an external force, KEOT measures the value of the maximum deformation energy to determine the optimal measurement position and the quantity of sensors. The damage conditions in this study were limited to cable breakage, and cable damage was caused by dividing the cable-stayed bridge into four sections. Through FE structural analysis, a virtual model similar to the actual model was created in the real-time damage evaluation method of cable. After applying random oscillation waves to the generated virtual model and model structure, cable damage to the model structure was caused. The two data were compared by defining the response output from the virtual model as a corruption-free response and the response measured from the real model as a corruption-free data. The degree of damage was evaluated by applying the data of the damaged cable-stayed bridge to the Improved Mahalanobis Distance (IMD) theory from the data of the intact cable-stayed bridge. As a result of evaluating damage with IMD theory, it was identified as a useful damage evaluation technology that can properly find damage by section in real time and apply it to real-time monitoring.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

Identifying Multiple Leverage Points ad Outliers in Multivariate Linear Models

  • Yoo, Jong-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.667-676
    • /
    • 2000
  • This paper focuses on the problem of detecting multiple leverage points and outliers in multivariate linear models. It is well known that he identification of these points is affected by masking and swamping effects. To identify them, Rousseeuw(1985) used robust estimators of MVE(Minimum Volume Ellipsoids), which have the breakdown point of 50% approximately. And Rousseeuw and van Zomeren(1990) suggested the robust distance based on MVE, however, of which the computation is extremely difficult when the number of observations n is large. In this study, e propose a new algorithm to reduce the computational difficulty of MVE. The proposed method is powerful in identifying multiple leverage points and outlies and also effective in reducing the computational difficulty of MVE.

  • PDF

VISIBLE/NEAR-IR REFLECTANCE SPECTROSCOPY FOR THE CLASSIFICATION OF POULTRY CARCASSES

  • Chen, Yud-Ren
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.403-412
    • /
    • 1993
  • This paper presents the progress of the development of a nondestructive technique for the classification of normal, septicemic , and cadaver poultry carcasses by the Instrumentation and Sensing Laboratory at Beltsville, Maryland, U.S.A. The Sensing technique is based on the diffuse reflectance spectroscopy of poultry carcasses.

  • PDF

Permutation tests for the multivariate data

  • Park, Hyo-Il;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1145-1155
    • /
    • 2007
  • In this paper, we consider the permutation tests for the multivariate data under the two-sample problem setting. We review some testing procedures, which are parametric and nonparametric and compare them with the permutation ones. Then we consider to try to apply the permutation tests to the multivariate data having the continuous and discrete components together by choosing some suitable combining function through the partial testing. Finally we discuss more aspects for the permutation tests as concluding remarks.

  • PDF