양적 형질을 중심으로 다변량 분석법에 의해 매실 품종들 간의 유전적 거리를 추정하고 이에 기초한 클러스터 분석을 실시하여 품종을 분류하였다. Mahalanobis's distance (D)에 의하여 공시한 20개 품종을 5개 군으로 대별해 볼 수 있었는데, 제1군이 2품종, 제2군이 4품종, 제3군이 5품종, 제4군이 5품종, 제5군이 4품종으로 그룹을 형성하였다. 제1군과 제2군은 꽃잎 수와 암술 수가 많은 품종인 반면에 제3군과 제4군은 엽장과 엽폭은 높으나 꽃잎 수와 암술 수가 낮은 품종군이었다. 지리적 분포와 유전적 변이는 직접적인 관련이 없었다. 품종군 내, 품종 간의 $D^2$에 가장 크게 영향을 미친 형질은 암술 수와 엽장 및 엽폭이었다.
In content based image retrieval (CBIR) system, the images are represented based upon its feature such as color, texture, shape, and spatial relationship etc. In this paper, we propose a MRI Image Retrieval using wavelet transform with mahalanobis distance measurement. Wavelet transformation can also be easily extended to 2-D (image) or 3-D (volume) data by successively applying 1-D transformation on different dimensions. The proposed algorithm has tested using wavelet transform and performance analysis have done with HH and $H^*$ elimination methods. The retrieval image is the relevance between a query image and any database image, the relevance similarity is ranked according to the closest similar measures computed by the mahalanobis distance measurement. An adaptive similarity synthesis approach based on a linear combination of individual feature level similarities are analyzed and presented in this paper. The feature weights are calculated by considering both the precision and recall rate of the top retrieved relevant images as predicted by our enhanced technique. Hence, to produce effective results the weights are dynamically updated for robust searching process. The experimental results show that the proposed algorithm is easily identifies target object and reduces the influence of background in the image and thus improves the performance of MRI image retrieval.
사물 인터넷(IOT)을 기반으로 한 지하철 재난 조기경보 및 승객 대피를 위한 재난전조 시스템 개발 연구가 이미 선행연구를 통해 수행하였다. 본 논문에서는 역에 설치된 센서 데이터를 분석하여 재난을 신속 하게 감지하기 위한 후속 연구이다. 특히, 본 연구는 초기 시스템 구축 시 센서의 설치 위치에 따라 다를 수 있는 환경변화를 고려한 마할라노비스 거리를 기반으로 통계적 방법론을 개발하였다.
본 연구에서는 수냉식 발전기 고정자 권선의 건전성 예지 방법에 대해 연구하였다. 권선의 데이터를 흡습 데이터와 정상 데이터로 분류 하였으며 각각의 데이터 군을 다른 방법으로 예측 하였다. 흡습 데이터를 예측하기 위해 픽의 제 2 법칙(Fick's second law)를 이용하여 건전성 감소 모델링을 하였고 픽의 제 2법칙의 해를 이용하여 흡습 모델식을 만들었다. 정상 데이터는 데이터의 분포가 정규분포를 따른다는 가설을 세운 후 카이제곱 검정을 통해 이를 입증하였다. 예측된 흡습 데이터와 정상 데이터를 이용하여 건전성 인자인 방향성 마할라노비스 거리(Directional mahalanobis distance; DMD)의 예측값을 산출하였고 흡습 권선의 고장 예상시점을 계산했다.
수도 8개 단간계통을 무비, 소비, 보비, 다비의 시비구에 공시하여 수량구요소의 수량에 대한 경노계수와 D$^2$, PCA, Q상관에 의한 Dendrogram을 작성하여 시비량간 및 방법간을 비교한 결과는 다음과 같다. 1. 8개 계통의 형질평균치는 시비량에 따라 큰 차이를 보이지 않았으나 동일시비내 계통간에는 유의차가 있었다. 2. 형질간 유의성 있는 상관을 보인 경우는 많지 않았으며 시비량이 많은 구에서 유의한 상관을 보인 경우가 적었다. 3. 수량구성요소의 수량에 대한 직접효과는 수당입수가 가장 컸고 다음이 주당수수였으며 이들은 다비에서 더욱 커졌다. 수수의 입수를 통고 간접효과가 부로 컸으며 다비에서 더욱 더 컸다. 4. D$^2$, Q상관, PCA에 의한 유사도는 시비량 차이에 따라 큰 차이는 없었으며 3가지 방법간에서는 D$^2$와 Q상관은 완전 일치하였으며 PCA에 의하여서도 이들과 비슷하였다.
Kim, Hyoungseop;Seiji Ishikawa;Yoshinori Otsuka;Hisashi Shimizu;Takashi Shinomiya
제어로봇시스템학회:학술대회논문집
/
제어로봇시스템학회 2001년도 ICCAS
/
pp.105.1-105
/
2001
In this paper, a technique is described for classifying normal cases and abnormal cases in automatic spinal deformity detection by computer based on moire topographic images of human backs. Displacement is evaluated statistically between the middle line extracted from the entire moire image and the middle line obtained from a small rectangle area defined on the moire image. The middle line is calculated employing a developed potential symmetry analysis technique. The displacement is calculated in several regions and the mean and the standard deviation of the displacement values are chosen as two features. A linear discriminant function (LDF) is defined on the 2-D feature space based on the Mahalanobis distance and the features are classified into two categories, i.e., normal and ...
International Journal of Control, Automation, and Systems
/
제2권3호
/
pp.354-361
/
2004
To improve fault isolation performance of the Bayes isolator, this paper proposes the Fuzzy-Bayes isolator, which uses the Fuzzy-Bayes classifier as a fault isolator. The Fuzzy-Bayes classifier is composed of the Bayes classifier and weighting factor, which is determined by fuzzy inference logic. The Mahalanobis distance derivative is mapped to the weighting factor by fuzzy inference logic. The Fuzzy-Bayes fault isolator is designed for the BLDC motor fault diagnosis system. Fault isolation performance is evaluated by the experiments. The research results indicate that the Fuzzy-Bayes fault isolator improves fault isolation performance and that it can reduce the transition region chattering that is occurred when the fault is injected. In the experiment, chattering is reduced by about half that of the Bayes classifier's.
양적 형질을 중심으로 다변량 해석법에 의해 율무품종들 간의 유전적 거리를 추정하고 이에 기초한 Cluster analysis를 실시하여 품종을 분류한 결과는 다음과 같다. 1. Mahalanobis's distance(D$^2$)에 의하여 공시한 62개 품종을 10개군으로 대별해 볼 수 있었는데 1개 품종만으로 군을 형성한 제V군을 제외하고는 모든 품종이 고른군을 형성하였다. 2. 제I군에 3품종(5%), 제II군에 18품종(29%), 제III군에 5품종(8%), 제IV군에 13품종(21%), 제V군에 1품종(2%), 제Ⅵ군에 5품종(8%), 제Ⅶ5군에 7품종(11%), 제Ⅷ군에 4품종(7%), 제Ⅸ군에 2품종(3%) 그리고 제Ⅹ군에 4품종(7%)이 소속되어 있으며 제II군과 IV군은 여타 형질면에 상당한 변이폭을 가진 반면 제Ⅷ-Ⅹ군은 단간종으로 초세나 수량형질면에서 변이폭이 좁고 다소 렬세인 경향이었다. 3. 지리적 분포와 유전적 변이는 직접관련이 없는 것으로 평가되었다. 4. 품종군내, 품종군간의 D$^2$에 가장 큰 영향을 미친 형질은 개화기, 성숙기, 초장, 등숙율, 립수이었다.
Recently, the number of techniques for analyzing medical images has been increasing in computer vision, employing X-ray CT images, ultrasound images, MR images, moire topographic images, etc. Spinal deformity is a serious problem especially for teenagers and medical doctors inspect moire topographic images of their backs visually for the primary screening. If a subject is normal, the moire image is almost symmetric with respect to the middle line of the subject's back, otherwise it shows asymmetric shape. In this paper, an image analysis technique is described for discriminating suspicious cases from normal in human spinal deformity by recognizing asymmetric moire images of human backs. The principal axes which are sensitive to asymmetry of the moire image are extracted at two parts on a subject's back and their angles are evaluated with respect to the detected middle line of the back. The two angles compose a 2-D feature space and inspected cases are divided into two clusters in the space by a linear discriminant function based on the Mahalanobis distance. Given 120 cases, 60 normal and 60 abnormal, the leave-out method was applied for the recognition and 75% recognition rate was achieved.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.