• 제목/요약/키워드: Magnification standards

검색결과 14건 처리시간 0.02초

현미경의 길이표준 소급성 확립을 위한 배율 교정 시편 인증 (Certification of magnification standards for the establishment of meter-traceability in microscopy)

  • 김종안;김재완;박병천;엄태봉;강주식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.645-648
    • /
    • 2005
  • Microscopy has enabled the development of many advanced technologies, and higher level microscopic techniques are required according to the increase of research in nano-technology and bio-technology fields. Therefore, in many applications, we need to measure the dimension of micro-scale parts accurately, not just to observe their shapes. To establish the meter-traceability in microscopy, gratings have been widely used as a magnification standard. KRISS provides the certification service of magnification standards using an optical diffractometer and a metrological AFM (MAFM). They are based on different measurement principles, and so can give complementary information for each other. In this paper, we describe the configuration of each system and measurement procedures to certificate grating pitch values of magnification standards. Several measurement results are presented, and the discussion about them are also given. Using the optical diffractometer, we can calibrate a grating specimen with uncertainty of less than 50 pm. The MAFM can measure a grating specimen of down to 100 nm pitch value, and the calibrated values usually have uncertainty less than 500 pm.

  • PDF

투시 조영 검사 시 확대율에 따른 피폭선량에 관한 고찰 (Study on Radiation dose in according to Magnification's rate in fluoroscopy)

  • 강경미;홍선숙;성민숙;손운흥
    • 대한디지털의료영상학회논문지
    • /
    • 제15권2호
    • /
    • pp.39-44
    • /
    • 2013
  • Purpose : The purpose of this study is the magnification rates depending on the area of patient dose (DAP) and glass dosimeter see the change of the dose according to the dose characteristics of low-magnification aims to raise standards. Materials and Method : Direct DR equipment Sonialvision DAR-8000f, Shimadzu was used, the patient entrance dose measurements to the surface of the Rando Phantom of the neck and the abdomen was placed on the Xi unfors. glass dosimeter for measuring organ doses at the same time the Rando Phantom of the major organs in place by inserting a 9 ", 12", 15 ", 17" and 30 seconds for each magnification were measured according in fluoroscopy. DAP meter area of the patient dose was measured. Result : Esophagography at 17" 143% than 9"magnification the average area dose was increased. Organ dose of Esophagography at 17" was decreased 25.32% than 9" magnification. UGI at 17" was increased 129.73% DAP than 9" magnification. Organ dose of UGI at 17" was decreased 23.32% than 9" magnification. Where the major organs of magnification at 17" were decreased(lung -25.96%, stomach -33.09%, spleen -27.81%, liver -4.92%) than 9" magnification. Conclusion : Expected to get better quality image While using the proper magnification, and have recognition that difference Organ doses and DAP meter in fluoroscopy.

  • PDF

광 회절계를 이용한 격자 피치 표준 시편의 측정 및 불확도 해석 (Measurement of Grating Pitch Standards using Optical Diffractometry and Uncertainty Analysis)

  • 김종안;김재완;박병천;강주식;엄태봉
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.72-79
    • /
    • 2006
  • We measured grating pitch standards using optical diffractometry and analyzed measurement uncertainty. Grating pitch standards have been used widely as a magnification standard for a scanning electron microscope (SEM) and a scanning probe microscope (SPM). Thus, to establish the meter-traceability in nano-metrology using SPM and SEM, it is important to certify grating pitch standards accurately. The optical diffractometer consists of two laser sources, argon ion laser (488 nm) and He-Cd laser (325 nm), optics to make an incident beam, a precision rotary table and a quadrant photo-diode to detect the position of diffraction beam. The precision rotary table incorporates a calibrated angle encoder, enabling the precise and accurate measurement of diffraction angle. Applying the measured diffraction angle to the grating equation, the mean pitch of grating specimen can be obtained very accurately. The pitch and orthogonality of two-dimensional grating pitch standards were measured, and the measurement uncertainty was analyzed according to the Guide to the Expression of Uncertainty in Measurement. The expanded uncertainties (k = 2) in pitch measurement were less than 0.015 nm and 0.03 nm for the specimen with the nominal pitch of 300 nm and 1000 nm. In the case of orthogonality measurement, the expanded uncertainties were less than $0.006^{\circ}$. In the pitch measurement, the main uncertainty source was the variation of measured pitch values according to the diffraction order. The measurement results show that the optical diffractometry can be used as an effective calibration tool for grating pitch standards.

광학 현미경을 이용한 선표준물 측정 시스템 개발 (Development of Line Standards Measurement System Using an Optical Microscope)

  • 김종안;김재완;강주석;엄태봉
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.72-78
    • /
    • 2009
  • We developed a line standards measurement system using an optical microscope and measured two kinds of line standards. It consists of three main parts: an optical microscope module including a CCD camera, a stage system with a linear encoder, and a measurement program for a microscopic image processing. The magnification of microscope part was calibrated using one-dimensional gratings and the angular motion of stage was measured to estimate the Abbe error. The threshold level in line width measurement was determined by comparing with certified values of a line width reference specimen, and its validity was proved through the measurement of another line width specimen. The expanded uncertainty (k=2) was about 100 nm in the measurements of $1{\mu}m{\sim}10{\mu}m$ line width. In the comparison results of line spacing measurement, two kinds of values were coincide within the expanded uncertainty, which were obtained by the one-dimensional measuring machine in KRISS and the line standards measurement system. The expanded uncertainty (k=2) in the line spacing measurement was estimated as $\sqrt{(0.098{\mu}m)^2+(1.8{\times}10^{-4}{\times}L)^2}$. Therefore, it will be applied effectively to the calibration of line standards, such as line width and line spacing, with the expanded uncertainty of several hundreds nanometer.

고해상도 표면 측정을 위한 회전 프리즘 정합 간섭계 (Rotational Prism Stitching Interferometer for High-resolution Surface Testing)

  • 송인웅;권우성;김학용;이윤우;이종웅;양호순
    • 한국광학회지
    • /
    • 제34권3호
    • /
    • pp.117-123
    • /
    • 2023
  • 반사경의 광학면이 넓어질수록 높은 공간 주파수 형상이 광학계의 성능에 큰 영향을 주므로, 대형 반사경 성능 평가에서 이를 측정할 수 있어야 한다. 따라서 높은 주파수의 형상을 샘플링할 수 있는 고해상도 형상 측정 시스템이 필요하다. 본 연구에서는 반사경의 고해상도 형상 측정을 위한 회전 프리즘 정합 간섭계(rotational prism stitching interferometer, RPSI)라는 새로운 방법을 제안한다. RPSI는 기존에 사용되고 있는 상용 간섭계에 빔 확장 렌즈, 이송 거울, 회전 프리즘 등을 추가하여 구성되었으며, 간섭계를 움직이지 않고 원통 좌표계를 기준으로 전체 구경을 아우르는 부분 구경 형상들을 측정한다. 측정된 부분 구경들은 최소자승법을 이용한 부분 구경 정합법을 이용하여 정합되며, 빔확장 렌즈 배율의 제곱만큼 높은 샘플링 밀도로 전체 구경 형상 정보를 복원 가능하다. 3배율을 가지는 RPSI를 이용하여 직경 40 mm의 구면 반사경 형상을 측정하였고, 간섭계 단독으로 측정한 전체 구경 형상과 비교 검증하였다. 약 1 nm RMS의 근소한 차이로 유사한 형상을 잘 복원할 수 있었으며, 간섭계 단독으로 사용한 형상 측정 결과보다 렌즈의 배율의 제곱배만큼 향상된 샘플링 밀도로 형상 측정이 가능함을 확인하였다.

Diagnosis of Unstained Biological Blood Cells Using a Phase Hologram Displayed by a Phase-only Spatial Light Modulator and Reconstructed by a Fourier Lens

  • Ibrahim, Dahi Ghareab Abdelslam
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.598-607
    • /
    • 2022
  • In this paper, a simple nondestructive technology is used to investigate unstained biological blood cells in three dimensions (3D). The technology employs a reflective phase-only spatial light modulator (SLM) for displaying the phase hologram of the object being tested, and a Fourier lens for its reconstruction. The phase hologram is generated via superposing a digital random phase on the 2D image of the object. The phase hologram is then displayed by the SLM with 256 grayscale levels, and reconstructed by a Fourier lens to present the object in 3D. Since noise is the main problem in this method, the windowed Fourier filtering (WFF) method is applied to suppress the noise of the reconstructed object. The quality of the reconstructed object is refined and the noise level suppressed by approximately 40%. The technique is applied to objects: the National Institute of Standards (NIS) logo, and a film of unstained peripheral blood. Experimental results show that the proposed technique can be used for rapid investigation of unstained biological blood cells in 3D for disease diagnosis. Moreover, it can be used for viewing unstained white blood cells, which is still challenging with an optical microscope, even at large magnification.

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

THE HISTRICAL CHANGES OF JAPANESE QUALITY CONTROL AND TRENDS AND TASKS OF QUALITY ISSUES

  • Tanaka Hiroshi
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.407-412
    • /
    • 1998
  • TQC, the features of Japanese QC (JQC), is forced to change now. There are many problems related to QC field, such as magnification of quality objects, social quality, thoroughness of CS, enforcement of PL law, applications of ISO standards concerning the QA system and the environmental management system, and still more recent American industrial tendency which attaches importance to TQM and so forth. Qn the occasion of JQC have passed for fifty years, since 1945. I would like to look back upon its QC history and discuss the meaning of the recent changes in QC concepts and the theoretical framework of its QC.

  • PDF

전력회사의 스타콘 투입시 과도 전압 상승과 고조파 분석에 관한 연구 (A Study on the Analysis of Transient Overvoltages and Harmonics due to Utility STATCON Switching)

  • 김경철;서범관;송영주;이일무
    • 조명전기설비학회논문지
    • /
    • 제17권5호
    • /
    • pp.51-59
    • /
    • 2003
  • 전력회사와 수용가들은 유도성 부하에 무효전력을 공급하여 역률(수용가)이나 전압(전력회사)을 조절하기 위해 커패시터 뱅크(전력회사는 스타콘이라 함)를 설치 운영하고 있다. 본 논문에서는 전력회사의 스타콘 투입시 발생되는 과도 전압 상승과 고조파를 분석하고자 한다. 과도 전압과 고조파를 저감시키는 간단한 수단중의 하나는 수용가의 커패시터 뱅크를 전력회사의 스타콘을 투입한 후에 과도상태가 지난뒤에 투입하는 방법이다. EDSA프로그램으로 컴퓨터 시뮬레이션을 수행하여 수용가에서의 과도 전압 상승과 고조파 저감 효과를 검증 하였다. 그리고 수용가에서 발생하는 고조파를 잘 알려진 국제 고조파 관리 기준인 IEEE 519와 IEC 1000으로 비교해 보았다.

내진시험을 통한 IRB 시스템의 성능 평가 (Performance Evaluation of IRB System Using Seismic Isolation Test)

  • 박영기;하성훈;우제관;최승복;김현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2013
  • This paper presents experimental evaluation of IRE (isolation roller bearing) seismic isolation device. From the combination of base isolation on the IRE system displacement response spectrum and acceleration response spectrum, the compressive strength and the coefficient of friction experiments. Also the IRE system is evaluated by environment test according to KS standards. Both the resonance and seismic experiments using a combination of the IRE and Natural Rubber Bearing (NRB) are performed in order to analyze the seismic isolation of the IRE system dynamic characteristics. For the given load and exciting frequency, the resonant frequency becomes lower, but the resonant magnification remains to be same. However, it is shown that when we consider the IRE only, the vibration on the table with the horizontal movement and the independent horizontal displacement due to the rolling motion of the plate and roller are significantly reduced. This result verifies that the proposed optimal design method of the IRE system is very effective.

  • PDF