• 제목/요약/키워드: Magnetron sputtering technology

검색결과 629건 처리시간 0.02초

RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장 (Growth of p-ZnO by RF-DC magnetron co-sputtering)

  • 강승민
    • 한국결정성장학회지
    • /
    • 제14권6호
    • /
    • pp.277-280
    • /
    • 2004
  • p형 ZnO 에피 박막을 사파이어 기판의 (0001)면 상에 RF-DC magnet co-sputtering 법으로 성장시켰다. 약 120nm두께의 단결정상 박막을 성공적으로 얻어내었다. p형 ZnO를 만들기 위해서 Al 금속 타켓을 이용하여 DC 스퍼터링으로 $400^{\circ}C$$600^{\circ}C$에서 ZnO를 rf magnetron sputtering으로 증착하고, 동시에 Al의 doping을 행하였으며, 성장된 박막의 결정성과 광특성에 대하여 고찰하였다.

Microstructures and Mechanical Properties of HfN Coatings Deposited by DC, Mid-Frequency, and ICP Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.393-398
    • /
    • 2023
  • Properties of hafnium nitride (HfN) coatings are affected by deposition conditions, most often by the sputtering technique. Appropriate use of different magnetron sputtering modes allows control of the structural development of the film, thereby enabling adjustment of its properties. This study compared properties of HfN coatings deposited by direct current magnetron sputtering (dcMS), mid-frequency direct current magnetron sputtering (mfMS), and inductively coupled plasma-assisted magnetron sputtering (ICPMS) systems. The microstructure, crystalline, and mechanical properties of these HfN coatings were investigated by field emission electron microscopy, X-ray diffraction, atomic force microscopy, and nanoindentation measurements. HfN coatings deposited using ICPMS showed smooth and highly dense microstructures, whereas those deposited by dcMS showed rough and columnar structures. Crystalline structures of HfN coatings deposited using ICPMS showed a single δ-HfN phase, whereas those deposited using dcMS and mfMS showed a mixed δ-HfN and HfN0.4 phases. Their performance were increased in the order of dcMS < mfMS < ICPMS, with ICPMS achieving a value of 47.0 GPa, surpassing previously reported results.

RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성 (The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power)

  • 장야쥔;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제12권1호
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

RF magnetron sputtering으로 증착한 IGZO 박막의 RF power에 따른 구조적, 광학적 및 전기적 특성 연구 (The Structures, Optical and Electrical Properties of IGZO Thin Films by RF Magnetron Sputtering According to RF Power)

  • 연제호;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.57-61
    • /
    • 2016
  • We have studied the structural, optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the silicon wafer by RF magnetron sputtering method. The RF power in sputtering process was varied as 15W, 30W, 45W, 60W, 75W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The Hall measurements in the low RF power is the high mobility above $10cm^2/V{\cdot}s$ and the low resistvity are obtained in the IGZO thin films.

대면적 마그네트론 스퍼터링 증착장비의 수냉시스템 방열성능 해석 (Cooling Performance Analysis of Water-Cooled Large Area Magnetron Sputtering System)

  • 김경진
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.111-116
    • /
    • 2010
  • In a large area magnetron sputtering system, which is under the influence of high heat load from the plasma, it is necessary to use the effective water cooling in order to maintain the proper deposition performance and the economic use of target materials. A series of three-dimensional numerical simulations are carried out on the simplified model of the large area magnetron sputtering system with the cooling plate that includes the U-shaped water channel. The analysis is focused on the effects of water channel geometry, cooling water flowrate, thermal conductivity of target material, and the degree of target erosion on the cooling performance of cooling plate, which is represented by the temperature distribution of target material.

유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석 (Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP))

  • 김동선
    • 반도체디스플레이기술학회지
    • /
    • 제10권2호
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.

Numerical Analysis of the Incident ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young;Oh, Sehun;Kim, Ho Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제27권1호
    • /
    • pp.19-22
    • /
    • 2018
  • The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.

Numerical Analysis of the Incident Ion Energy and Angle Distribution in the DC Magnetron Sputtering for the Variation of Gas Pressure

  • Hur, Min Young;Oh, Sehun;Kim, Ho Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제27권2호
    • /
    • pp.26-29
    • /
    • 2018
  • The ion energy and angle distributions (IEADs) in the DC magnetron sputtering systems are investigated for the variation of gas pressure using particle-in-cell simulation. Even for the condition of collisionless ion sheath at low pressure, it is possible to change the IEAD significantly with the change of gas pressure. The bombarding ions to the target with low energy and large incident angle are observed at low pressure when the sheath voltage drop is low. It is because the electron transport is hindered by the magnetic field at low pressure because of few collisions per electron gyromotion while the ions are not magnetized. Therefore, the space charge effect is the most dominant factor for the determination of IEADs in low-pressure magnetron sputtering discharges.

PET 기판 위에 RF magnetron sputtering으로 증착한 AZO 박막의 구조적, 광학적, 전기적 특성 (The Structure, Optical and Electrical Characteristics of AZO Thin Film Deposited on PET Substrate by RF Magnetron Sputtering Method)

  • 이윤승;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.36-40
    • /
    • 2016
  • The 2 wt.% Al-doped ZnO(AZO) thin films were fabricated on PET substrates with various RF power 20, 35, 50, 65, and 80W by using RF magnetron sputtering in order to investigate the structure, electrical and optical properties of AZO thin films in this study. The XRD measurements showed that AZO films exhibit c-axis orientation. At a RF power of 80W, the AZO films showed the highest (002) diffraction peak with a FWHM of 0.42. At a RF power of 65W, the lowest electrical resistivity was about $1.64{\times}[10]$ ^(-4) ${\Omega}-cm$ and the average transmittance of all films including substrates was over 80% in visible range. Good transparence and conducting properties were obtained due to RF power control. The obtained results indicate that it is acceptable for applications as transparent conductive electrodes.