• Title/Summary/Keyword: Magnetron sputtering method

Search Result 702, Processing Time 0.02 seconds

Comparison of Electrical Signal Properties about Top Electrode Size on Photoconductor Film (광도전체 필름 상부 전극크기에 따른 전기적 신호 특성 비교)

  • Kang, Sang-Sik;Jung, Bong-Jae;Noh, Si-Cheul;Cho, Chang-Hoon;Yoon, Ju-Sun;Jeon, Sung-Pyo;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Currently, the development of direct conversion radiation detector using photoconductor materials is progressing in widely. Among of theses photoconductor materials, mercuric iodide compound than amorphous selenium has excellent absorption and sensitivity of high energy radiation. Also, the detection efficiency of signal generated in photoconductor film varies by electric filed and geometric distribution according to top-bottom electrode size. Therefore, in this work, the x-ray detection characteristics are investigated about the size of top electrode in $HgI_2$ photoconductor film. For sample fabrication, to solve the problem that is difficult to make a large area film, we used the spatial paste screen-print method. And the sample thickness is $150{\mu}m$ and an film area size is $3cm{\times}3cm$ on ITO-coated glass substrate. ITO(Indium-Tin-Oxide) electrode was used as top electrode using a magnetron sputtering system and each area is $3cm{\times}3cm$, $2cm{\times}2cm$ and $1cm{\times}1cm$. From experimental measurement, the dark current, sensitivity and SNR of the $HgI_2$ film are obtained from I-V test. From the experimental results, it shows that the sensitivity increases in accordance with the area of the electrode but the SNR is decreased because of the high dark current. Therefore, the optimized size of electrode is importance for the development of photoconductor based x-ray imaging detector.

Effects of an $Al_2$O$_3$Surfasce Protective Layer on the Sensing Properties of $SnO_2$Thin Film Gas Sensors (Al$_2$O$_3$ 표면 보호층이 박막형 $SnO_2$ 가스센서의 감지 특성에 미치는 영향)

  • Seong, Gyeong-Pil;Choe, Dong-Su;Kim, Jin-Hyeok;Mun, Jong-Ha;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.778-783
    • /
    • 2000
  • Effects of the $Al_2$O$_3$surface protective layer, deposited on the SnO$_2$sensing layer by aerosol flame deposition (AFD) method, on the sensing properties of SnO$_2$thin film ags sensors were investigated.Effects of Pt doping to the $Al_2$O$_3$surface protective layer on the selectivity of CH$_4$ gas were also investigated. 0.3$\mu\textrm{m}$ thick SnO$_2$thin sensing layers on Pt electrodes were prepared by R.F. magnetron sputtering with R.F. power of 50 W, at working pressure of 4mTorr, and at 20$0^{\circ}C$ for 30 min. $Al_2$O$_3$surface protective layers on SnO$_2$layers were prepared by AFD using a diluted aluminum nitrade (Al(NO$_3$).9$H_2O$) solution. The sensitivity of CO gas in the SnO$_2$gas sensor with an $Al_2$O$_3$surface protective layer was significantly decreased. But that of CH$_4$gas remained almost same with pure SnO$_2$gas sensor. This result shows that the selectivity of CH$_4$gas is increased because of the $Al_2$O$_3$surface protective layer. In the case of SnO$_2$gas sensors with Pt-doped $Al_2$O$_3$surface protective layers, low sensing property to CO gas and high sensing property to CH$_4$were observed. This results in the increasing of selectivity of CH$_4$gas selectivity are discussed.

  • PDF