• Title/Summary/Keyword: Magnetron plasma sputtering deposition

Search Result 158, Processing Time 0.024 seconds

Tendency of PVD coating technology on Metal cutting tools (금속 절삭공구에 대한 PVD 코팅기술의 동향)

  • Kim, Jong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.11-17
    • /
    • 2001
  • Industrial use of physical vapor deposition(PVD) has been widely expanded during last two decades, and in the mean time plasma assistance in PVD has become an essential tool in preparing compound films with dense microstructure. The principles of electron beam-based plating, balanced and unbalanced magnetron sputtering and cathodic arc deposition. consisting three basic configuration of plasma assisted PVD(PAPVD)process, were reviewed. Recent technical development in PVD coating process were discussed. This paper tries to show tendency for developing new coating film on cutting tools.

  • PDF

Characterization of AZO Thin Film by Plasma Surface Treatment (플라즈마 표면 처리에 따른 AZO 박막의 특성 변화)

  • Woo, Jong-Chang;Kim, Gwan-Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.147-150
    • /
    • 2019
  • There is a need for the development of transparent conductive materials that are economical and environmentally friendly with exhibit low resistivity and high transmittance in the visible spectrum. In this study, the deposition rate and uniformity of Al-doped ZnO-thin films were improved by changing the Z-motion of the sputtering system. The deposition rate and the uniformity were determined to be 3.44 nm/min and 1.23%, respectively, under the 10 mm Z-motion condition. During $O_2$ plasma treatment, the intrusion-type metal elements in the thin film were reduced, which contributed to an oxygen vacancy reduction in addition to structural stabilization. Moreover, the sheet resistance was more easily saturated.

MoN-Cu Thin Films Deposited by Magnetron Sputtering with Single Alloying Target (단일 합금타겟을 이용한 마크네트론 스퍼터링 공정으로 증착된 MoN-Cu 박막)

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.4
    • /
    • pp.368-375
    • /
    • 2016
  • MoN-Cu thin films were prepared to achieve appropriate properties of high hardness and low friction coefficient, which could be applied to automobile engine parts for reducing energy consumption as well as solving wear problems. Composite thin films of MoN-Cu have been deposited by various processes using multiple targets such as Mo and Cu. However, those deposition with multiple targets revealed demerits such as difficulties in exact control of composition and homogeneous deposition. This study is aiming for suggesting an appropriate process to solve those problems. A single alloying target of Mo-Cu (10 at%) was prepared by powder metallurgy methods of mechanical alloying (MA) and spar plasma sintering (SPS). Thin film of MoN-Cu was then deposited by magnetron sputtering using the single alloying target of Mo-Cu (10 at%). Properties of the resulting MoN-Cu thin film were examined and compared to those of MoN-Cu thin films prepared with double targets of Mo and Cu.

Diamond-Like Carbon Films Deposited by Pulsed Magnetron Sputtering System with Rotating Cathode

  • Chun, Hui-Gon;You, Yong-Zoo;Nikolay S. Sochugov;Sergey V. Rabotkin
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.296-300
    • /
    • 2003
  • Extended cylindrical magnetron sputtering system with rotating 600-mm long and 90-mm diameter graphite cathode and pulsed power supply voltage generator were developed and fabricated. Time-dependent Langmuir probe characteristics as well as carbon films thickness were measured. It was shown that ratio of ions flux to carbon atoms flux for pulsed magnetron discharge mode was equal to $\Phi_{i}$ $\Phi$sub C/ = 0.2. It did not depend on the discharge current in the range of $I_{d}$ / = 10∼60 A since both the plasma density and the film deposition rate were found approximately proportional to the discharge current. In spite of this fact carbon film structure was found to be strongly dependent on the discharge current. Grain size increased from 100 nm at $I_{d}$ = 10∼20 A to 500 nm at $I_{d}$ = 40∼60 A. To deposit fine-grained hard nanocrystalline or amorphous carbon coating current regime with $I_{d}$ = 20 A was chosen. Pulsed negative bias voltage ($\tau$= 40 ${\mu}\textrm{s}$, $U_{b}$ = 0∼10 ㎸) synchronized with magnetron discharge pulses was applied to a substrate and voltage of $U_{b}$ = 3.4 ㎸ was shown to be optimum for a hard carbon film deposition. Lower voltages were not sufficient for amorphization of a growing graphite film, while higher voltages led to excessive ion bombardment and effects of recrystalization and graphitization.

Influence of Deposition Conditions on the Adhesion of Sputter-deposited MoS$_2$-Ti Films

  • Kim, Sun-Kyu;Yongliang Li
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2004
  • MoS$_2$-Ti films were deposited on SKD-11 tool steel substrate by a D.C. magnetron sputtering system. The influence of deposition parameters on the adhesion of the films was investigated by the scratch test. Crosssection morphology was evaluated using FE-SEM. The plasma etching played an important role on the adhesion of the films. The appropriate etching conditions roughened the surface, resulting In the improved adhesion of the film. The adhesion of the film increased with the interlayer thickness up to 110 nm and then decreased slightly with further increasing of interlayer thickness. The adhesion was highest at a bias voltage of -50 V. Further increase of the bias voltage decreased the film adhesion.

Synthesis of Conducting Diamond-Like Carbon Films by Triode Magnetron Sputtering-Chemical Vapor Deposition (3극 마그네트론 스팟터링 화학 기상 증착법에 의한 도전성 다이아몬드성 탄소 박막의 합성)

  • 태흥식;황기웅
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.149-156
    • /
    • 1996
  • Conducting diamond-like carbon films are synthesized using Triode Magnetron Sputtering-Plasma Enhanced Chemical Vapor Deposition(TMS-PECVD), and are examined by four point probe, microhardeness tester, and scanning electron miscroscopy(SEM). As the target bias and Ar/CH$_4$, ratio increase, the electrical resitivity and microhardness of the films are found to decrease, and also, their surface morphologies tend to be rough. While the resistivities of the films are shown to increase in proportion to the increase of the substrate bias, the microhardness of the films is shown to be maximun value(1600kg/$\textrm{mm}^2$) at a certain substrate bias(-70V). We can obtain the conducting diamond-like carbon films with the microhardness of 1600(kg/$\textrm{mm}^2$) and electrical resitivity of 16($\Omega$cm) at the process condition such as target bias -400V, substrate bias -70V, and Ar/$CH_4$ ratio 20.

  • PDF

ANALYSIS OF THIN FILM POLYSILICON ON GLASS SYNTHESIZED BY MAGNETRON SPUTTERING

  • Min J. Jung;Yun M. Chung;Lee, Yong J.;Jeon G. Han
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.68-68
    • /
    • 2001
  • Thin films of polycrystalline silicon (poly-Si) is a promising material for use in large-area electronic devices. Especially, the poly-Si can be used in high resolution and integrated active-matrix liquid-crystal displays (AMLCDs) and active matrix organic light-emitting diodes (AMOLEDs) because of its high mobility compared to hydrogenated _amorphous silicon (a-Si:H). A number of techniques have been proposed during the past several years to achieve poly-Si on large-area glass substrate. However, the conventional method for fabrication of poly-Si could not apply for glass instead of wafer or quartz substrate. Because the conventional method, low pressure chemical vapor deposition (LPCVD) has a high deposition temperature ($600^{\circ}C-1000^{\circ}C$) and solid phase crystallization (SPC) has a high annealing temperature ($600^{\circ}C-700^{\circ}C$). And also these are required time-consuming processes, which are too long to prevent the thermal damage of corning glass such as bending and fracture. The deposition of silicon thin films on low-cost foreign substrates has recently become a major objective in the search for processes having energy consumption and reaching a better cost evaluation. Hence, combining inexpensive deposition techniques with the growth of crystalline silicon seems to be a straightforward way of ensuring reduced production costs of large-area electronic devices. We have deposited crystalline poly-Si thin films on soda -lime glass and SiOz glass substrate as deposited by PVD at low substrate temperature using high power, magnetron sputtering method. The epitaxial orientation, microstructual characteristics and surface properties of the films were analyzed by TEM, XRD, and AFM. For the electrical characterization of these films, its properties were obtained from the Hall effect measurement by the Van der Pauw measurement.

  • PDF

Twin Target Sputtering System with Ladder Type Magnet Array for Direct Al Cathode Sputtering on Organic Light Emitting Diodes

  • Moon, Jong-Min;Kim, Han-Ki
    • Journal of Information Display
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • Twin target sputtering (TTS) system with a configuration of vertically parallel facing Al targets and a substrate holder perpendicular to the Al target plane has been designed to realize a direct Al cathode sputtering on organic light emitting diodes (OLEDs). The TTS system has a linear twin target gun with ladder type magnet array for effective and uniform confinement of high density plasma. It is shown that OLEDs with Al cathode deposited by the TTS show a relatvely lower leakage current density $({\sim}1{\times}10^{-5}mA/cm^2)$ at reverse bias of -6V, compared to that ($1{\times}10^{-2}{\sim}10^{-3}$ $mA/cm^2$ at -6V) of OLEDs with Al cathodes grown by conventional DC magnetron sputtering. In addition, it was found that Al cathode films prepared by TTS were amorphous structure with nanocrystallines due to low substrate temperature. This demonstrates that there is no plasma damage caused by the bombardment of energetic particles. This indicates that the TTS system with ladder type magnet array could be useful plasma damage free deposition technique for direct Al cathode sputtering on OLEDs or flexible OLEDs.

Effects of the Sputtering Thickness and the Incident Angle of Pt Film Deposition as a Counter Electrode for Dye-sensitized Solar Cells (염료감응형 태양전지의 상대전극 Pt 필름 두께와 증착 각도가 효율에 미치는 영향에 관한 연구)

  • Kim, Hee-Je;Yeo, Tae-Bin;Park, Sung-Joon;Kim, Whi-Young;Seo, Hyun-Woong;Son, Min-Kyu;Chae, Won-Yong;Lee, Kyoung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.588-593
    • /
    • 2010
  • Sputter deposition on a Pt counter electrode was studied using radio frequency (RF) plasma as the improvement of incident photon to current conversion efficiency (IPCE) for dye-sensitized solar cells (DSCs). Effects of the sputtering thickness and the incident angle on a Pt counter electrode for DSCs were investigated. Experiments to get the optimal sputtering time for the performance of the DSCs were carried out. And it is found that the optimized sputtering time was 120 seconds, in addition, the incident angles of the substrate was adjusted from $0^{\circ}$ to $60^{\circ}$. The maximum efficiency of 5.37% was obtained at the incident angle of $40^{\circ}$ with an active cell area of $1cm^2$.