• Title/Summary/Keyword: Magnetocardiograph

Search Result 6, Processing Time 0.017 seconds

Development of magnetocardiograph system using YBCO SQUID magnetometers (YBCO SQUID 자력계를 이용한 자기심장검사장치 개발)

  • Kim, I.S.;Oh, S.H.;Lim, H.K.;Lee, Y.H.;Lee, S.G.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.158-163
    • /
    • 2007
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal junctions have been fabricated for magnetocardiograph (MCG) measurements. We could fabricate YBCO SQUID magnetometers having magnetic field noise of about $20fT/Hz^{1/2}$ at white noise region. We have developed an MCG system employing the high performance SQUID magnetometers. The lightweight MCG system, requiring liquid nitrogen as a coolant, consists of 6-channel SQUID sensors, an adjustable patient bed with sliding motion, and data analyses software. The MCG system could record quite clear MCG signals in a room with moderate magnetic shielding. In normal operation with multi-position MCG measurements, we could obtain clear 48-point mappings of magnetic field map and current source map with high enough signal qualities far clinical trials.

  • PDF

Modeling of Heart Phantom using the Multidipole Current Source

  • Jang, Kwan-Hee;Yoon, Dal-Hwan;Min, Seung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1957-1962
    • /
    • 2003
  • In order to design the phantom of heart, we have developed the multi-dipole current source system. Such a one be clue to the various motion of heart. The magnetocardiograph (MCG) system for diagnosing the disease of the heart due to an analysis of the heart signal. The multidipole current source system be built by microprocessor. We use the shield room to obtain a good experimental result. Then the signal acquired is mixed with a background noise, through a filtering extracts a pure signal. The pure signal such a heart phantom is analyzed by an electromagnetic map.

  • PDF

Fabrication of HTS SQUID Sensors for the Application to a High S/N Ratio Magnetocardiograph System (저잡음 심자도측정시스템 개발을 위한 고온초전도 SQUID 센서의 제작)

  • Kim I. S;Yu K. K;Park Y. K
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.19-23
    • /
    • 2004
  • YBCO do superconducting quantum interference device (SQUID) magnetometers based on bicrystal Josephson junctions on 10 mm ${\times}$ 10 mm $SrTiO_3$ substrates have been fabricated. The pickup coil of the device was designed to have 16 parallel loops with 50-fm-wide lines. We could obtain optimised direct coupled YBCO SQUID magnetometer design with field sensitivity $B_{N}$ $\Phi$/ of $4.5 nT/\Phi_{0}$ and magnetic field noise $B_{N}$ of about $22 fT/Hz^{1}$2/ with an I/f corner frequency of 2 Hz measured inside a magnetically shielded room. Preliminary results of magnetocardiograph measurement using the HTS SQUID magnetometers show signal to noise ratio of about 110, which is comparable to the quality of a commercial MCG system based on Nb-SQUIDs.

  • PDF

Detection of Rapid Atrial Arrhythmias in SQUID Magnetocardiography (스퀴드 심자도 장치를 이용한 심방성 부정맥의 측정)

  • Kim Kiwoong;Kwon Hyukchan;Kim Ki-Dam;Lee Yong-Ho;Kim Jin-Mok;Kim In-Seon;Lim Hyun-Kyoon;Park Yong-Ki;Kim Doo-Sang;Lim Seung-Pyung
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 2005
  • We propose a method to measure atrial arrhythmias (AA) such as atrial fibrillation (Afb) and atrial flutter (Afl) with a SQUID magnetocardiograph (MCG) system. To detect AA is one of challenging topics in MCG. As the AA generally have irregular rhythm and atrio-ventricular conduction, the MCG signal cannot be improved by QRS averaging; therefore a SQUID MCG system having a high SNR is required to measure informative atrial excitation with a single scan. In the case of Afb, diminished f waves are much smaller than normal P waves because the sources are usually located on the posterior wall of the heart. In this study, we utilize an MCG system measuring tangential field components, which is known to be more sensitive to a deeper current source. The average noise spectral density of the whole system in a magnetic shielded room was $10\;fT/{\surd}Hz(a)\;1\;Hz\;and\;5\;fT/{\surd}Hz\;(a)\;100\;Hz$. We measured the MCG signals of patients with chronic Afb and Afl. Before the AA measurement, the comparison between the measurements in supine and prone positions for P waves has been conducted and the experiment gave a result that the supine position is more suitable to measure the atrial excitation. Therefore, the AA was measured in subject's supine position. Clinical potential of AA measurement in MCG is to find an aspect of a reentry circuit and to localize the abnormal stimulation noninvasively. To give useful information about the abnormal excitation, we have developed a method, separative synthetic aperture magnetometry (sSAM). The basic idea of sSAM is to visualize current source distribution corresponding to the atrial excitation, which are separated from the ventricular excitation and the Gaussian sensor noises. By using sSAM, we localized the source of an Afl successfully.

  • PDF