• Title/Summary/Keyword: Magnetocaloric effect

Search Result 48, Processing Time 0.025 seconds

Influence of crystallization treatment on structure, magnetic properties and magnetocaloric effect of Gd71Ni29 melt-spun ribbons

  • Zhong, X.C.;Yu, H.Y.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1289-1293
    • /
    • 2018
  • The influence of crystallization treatment on the structure, magnetic properties and magnetocaloric effect of $Gd_{71}Ni_{29}$ melt-spun ribbons has been investigated in detail. Annealing of the melt-spun samples at 610 K for 30 min, a majority phase with a $Fe_3C$-type orthorhombic structure (space group, Pnma) and a minority phase with a CrB-type orthorhombic structure (space group, Cmcm) were obtained in the amorphous matrix. The amorphous melt-spun ribbons undergo a second-order ferromagnetic to paramagnetic phase transition at 122 K. For the annealed samples, two magnetic phase transitions caused by amorphous matrix and $Gd_3Ni$ phases occur at 82 and 100 K, respectively. The maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ is $9.0J/(kg{\cdot}K)$ (5T) at 122 K for the melt-spun ribbons. The values of $(-{\Delta}S_M)^{max}$ in annealed ribbons are 1.0 and $5.7J/(kg{\cdot}K)$, corresponding to the two adjacent magnetic transitions.

Magnetic properties and magnetocaloric effect of Sr-doped Pr0.7Ca0.3MnO3 compounds

  • Yen, Pham Duc Huyen;Dung, Nguyen Thi;Thanh, Tran Dang;Yu, Seong-Cho
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1280-1288
    • /
    • 2018
  • In this work, we pointed out that Sr substitution for Ca leads to modify the magnetic and magnetocaloric properties of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds. Analyzing temperature dependence of magnetization, M(T), proves that the Curie temperature ($T_C$) increased with increasing Sr content (x); $T_C$ value is found to be 130-260 K for x = 0.0-0.3, respectively. Using the phenomenological model and M(T,H) data measured at several applied magnetic field, the magnetocaloric effect of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds has been investigated through their temperature and magnetic field dependences of magnetic entropy change ${\Delta}S_m$(T,H) and the change of the specific heat change ${\Delta}C_P$(T,H). Under an applied magnetic field change of 10 kOe, the maximum value of $-{\Delta}S_m$ is found to be about $3J/kg{\cdot}K$, and the maximum and minimum values of ${\Delta}C_P$(T) calculated to be about ${\pm}60J/kg{\cdot}K$ for x = 0.3 sample. Additionally, the critical behaviors of $Pr_{0.7}Ca_{0.3-x}Sr_xMnO_3$ compounds around their $T_C$ have been also analyzed. Results suggested a coexistence of the ferromagnetic short- and long-range interactions in samples. Moreover, Sr-doping favors establishing the short-range interactions.

Magnetic and Magnetocaloric Properties of (Gd1-xCex)Al2(x = 0, 0.25, 0.5, 0.75) Compounds

  • Gencer, H.;Izgi, T.;Kolat, V.S.;Kaya, A.O.;Atalay, S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.337-341
    • /
    • 2011
  • The magnetic and magnetocaloric properties of $Gd_{1-x}Ce_xAl_2$ (x = 0, 0.25, 0.5, 0.75) intermetallic compounds alloys have been investigated in detail for the first time. XRD patterns indicated that all the samples were crystallized in a single phase with $MgCu_2$-type structure (Laves phase). Ce substitution for Gd increased the lattice parameters and decreased the Curie temperature from 163 K for x = 0 to 37 K for x = 0.75. A maximum entropy change of 3.82 J/kg K was observed when a 2 T magnetic field was applied to the x = 0 sample. This entropy change decreased with increasing Ce content to 2.04 J/kg K for the x = 0.75 sample.

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad;Anwar, Mohammad Shafique;Khan, Saima Naz;Lee, Chan Gyu;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.445-451
    • /
    • 2018
  • We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

Recent R&D Trend in Magnetic Refrigeration at Room Temperature (실온 자기냉동의 최근 연구개발 동향)

  • Lee, Jong-Suk
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.613-618
    • /
    • 2006
  • The 1st International Conference on Magnetic Refrigeration at Room Temperature was held at Montreux, Switzerland during September 27-30, 2005. The conference was the first of its kind to bring together about 140 scientists and engineers interested in magnetic refrigeration in one place. The magnetocaloric effect was discovered in 1881, however, magnetic refrigeration at room temperature was demonstrated to be viable in 1997 Since then, R&D efforts toward magnetic refrigeration have been on the rise around the world, in both areas of systems and materials. The conference reflected the recent R&D trend in magnetic refrigeration at room temperature, which includes the use of permanent magnet instead of superconductor magnet, switch from reciprocating to rotary magnetic refrigeration system, development of magnetic materials based on transition metal elements besides rare earth materials such as gadolinium(Gd).

  • PDF

Experimental Study on a Rotary Magnetic Refrigeration Device (회전식 자기냉동장치에 대한 실험적 연구)

  • Lee Jong Suk;Hong Jeong Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1101-1106
    • /
    • 2004
  • Magnetic refrigeration is based on the magnetocaloric effect (MCE)-the ability of some materials to heat up when magnetized and cool down when demagnetized. A rotary magnetic refrigeration device using gadolinium (Gd) ribbon and permanent magnets was constructed for experimental study. Gd ribbon attached around a rotating wheel is cyclically magnetized and demagnetized by permanent magnets and exchanges heat with liquid in the surrounding container. Temperature of the liquid in each divided section of the container was measured and the experimental results obtained in this study were discussed.