• 제목/요약/키워드: Magneto-rheological Fluid

검색결과 133건 처리시간 0.033초

전단 모드형 자성유체댐퍼의 설계 (Design of Direct-Shear Mode MR Damper)

  • 김해란;이영신;이은엽;이규섭;오부진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.626-631
    • /
    • 2007
  • MR(Magneto-rheological) fluid is smart material that can be changed viscosity by controlling the magnetic field. MR damper with MR fluid can control damping force. It can be used extensively many engineering structures for reducing the effect of dynamic external disturbances. There are three kinds of MR dampers, such as valve mode, direct-shear mode and squeeze mode. In this study, design process of direct-shear mode MR damper with the MR fluid gap was developed. The parameters that used in the direct-shear mode MR damper Informed from the experiment of valve mode MR damper of Lord company. Magnetic analysis with finite element method was performed to find the optimal annular gap.

  • PDF

자기유변유체 다이어프램을 이용한 새로운 타입의 스피커 (A New Type Speaker Utilizing a Magneto-rheological Fluid Diaphragm)

  • 박진하;윤지영;김선혜;이태훈;이수혁;최승복
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.182-188
    • /
    • 2017
  • In this work, a new type speaker which features various resonant frequencies is proposed utilizing a magneto-rheological (MR) fluid and its performance is evaluated in terms of the change of the field-dependent sound pressure level. In order to achieve this goal, a whole concept of the speaker system is firstly discussed and subsequently a controllable diaphragm is made using MR fluid whose rheological properties such as viscosity are controllable by the magnitude of magnetic field. Then, the proposed speaker system consisting of the inner structure and the squeeze mode type of MR diaphragm is established in an anechoic room The effectiveness of the proposed speaker system is experimentally evaluated at two different conditions; with and without the magnetic field. It is shown from experimental tests that the sound pressure level at different sound source can be controlled which is not able to achieve using one conventional speaker system.

MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성 (Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids)

  • 장민규;최재영;이철희
    • Tribology and Lubricants
    • /
    • 제26권3호
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

Wind-Induced Vibration Control of a Tall Building Using Magneto-Rheological Dampers: A Feasibility Study

  • Gu, Ja-In;Kim, Saang-Bum;Yun, Chung-Bang;Kim, Yun-Seok
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.61-68
    • /
    • 2003
  • A recently developed semi-active control system employing magneto-rheological (MR) fluid dampers is applied to vibration control of a wind excited tall building. The semi-active control system with MR fluid dampers appears to have the reliability of passive control devices and the adaptability of fully active control systems. The system requires only small power source, which is critical during severe events, when the main power source may fail. Numerical simulation studies are performed to demonstrate the efficiency of the MR dampers on the third ASCE benchmark problem. Multiple MR dampers are assumed to be installed in the 76-story building. Genetic algorithm is applied to determine the optimal locations and capacities of the MR dampers. Clipped optimal controller is designed to control the MR dampers based on the acceleration feedback. To verify the robustness with respect to the variation of the external wind force, several cases with different wind forces are considered in the numerical simulation. Simulation results show that the semi-actively controlled MR dampers can effectively reduce both the peak and RMS responses the tall building under various wind force conditions. The control performance of the MR dampers for wind is found to be fairly similar to the performance of an active tuned mass damper.

  • PDF

MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공;양보석;하종용;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.464-467
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and excitation tests were performed to investigate the dynamic properties of squeeze mode type MR mount. Responses of the mount were compared in proportion to the applied magnetic field strength. The experimental results show that the mount can effectively reduce vibration amplitude in a wide frequency range by changing the applied magnetic field strength.

  • PDF

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

MR 유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

EMRF를 이용한 개선된 Semi-Active Damper 개발 (Development of Improved Semi-Active Damper Using EMRF)

  • 전승곤
    • 한국지진공학회논문집
    • /
    • 제26권4호
    • /
    • pp.149-156
    • /
    • 2022
  • Magneto-Rheological Fluid (MRF) is a functional fluid in which flow characteristics change into magnetic force due to its magnetic particles. When the semi-active control device does not use MRF for a long time, precipitation of magnetic particles and abnormal control force occur. Thus, Electro Magneto-Rheological Fluid (EMRF), which improves the precipitation of magnetic particles for MRF and exhibits existing control performance, was developed in this study. First, the optimal mix proportion ratio was selected by conducting a precipitation experiment and a controlled force test by varying the content of grease based on the existing MRF components. Also, EMRF was applied to the shear-type damper to evaluate the control performance when applied to the control device. The cylinder-type damper was developed to apply to the structure, and control performance evaluation was conducted. The result confirmed that the precipitation of the magnetic particles was improved, while the damper using EMRF exhibited excellent control performance.

MR 유체를 이용한 새로운 액추에이터의 제안, 설계 및 제어 (Propose, Design and Control of a New Actuator Using MR Fluid)

  • 김정수;안경관;;안영공
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.111-112
    • /
    • 2006
  • A new MR cylinder with built-in valves using Magneto - Rheological fluid (MR valve) is proposed for fluid power control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. This MR cylinder, which is composed of cylinder with small clearance and piston with electromagnet, has the characteristics of simple, compact and reliable structure. This paper presents a method to control the pressure of MR cylinder by using Generalized Predictive Control (GPC) algorithm. The differential pressure is controlled by applying magnetic field intensity to MR fluid. The use of GPC controller is to generate a control sequence by minimizing a cost function in such a way that the future system output is driven close to reference over finite prediction horizons. Experimental results from real time control using GPC method compared with conventional PID control method are also shown in this paper.

  • PDF