• Title/Summary/Keyword: Magneto-optical effect

Search Result 74, Processing Time 0.035 seconds

A Study on Direct Current Measurement Using Magneto-Optical LMF Method (자기장학 누설자속법을 응용한 직류전류계측법에 관한 연구)

  • Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • It is necessary to measure the direct current with a non-contact methodology for the liquid or gas phase, as welt as the conducting metals. This paper described a theoretical consideration and experimental verification for a non-contact quantitative direct current measurement system using the Faraday effect and magnetic flux leakage. The leakage of magnetic flux occurs around a gap when a ferromagnetic core including the discontinuous gap is magnetized. Two large anisotropic domains in a magneto-optical film are occurred by the vertical component of leaked magnetic flux and the domain walls are paralleled to the center of the gap. Here, the symmetrical arrangement of domains are deflected when a vertical magnetic field is applied to the magneto-optical film. The domain wall of the magneto-optical film are relocated when a measuring current passes through the ferromagnetic core. Therefore, a direct current passing through the core can be determined quantitatively by the measurement of moving distance of the domain wall.

Fomation and Properties of Multiple-Tone Spatial Light Modulator using Garnet Film with In-Plane Magnetization

  • Tsuzuki, A.;Uchida, H.;Takagi, H.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.143-146
    • /
    • 2006
  • We attempted to fabricate a new type of magneto optic spatial light modulator (MO-SLM) for multiple-tone modulation by using in-plane magnetization. In the MO-SLM, magnetic property of magneto-optical layer was modified to be suitable for multiple-tone expression by substituting Al in Bi:YIG film. At a driving current to 28 mA in an electrode of the fabricated MO-SLM, changes in brightness of pixels were observed using a polarization microscope.

Inter Landau Level Optical Absorption in Graphene Under Ultra-high Magnetic Field

  • Saito, H.;Nakamura, D.;Takeyama, S.;Kim, Yong-Min;An, K.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.360-360
    • /
    • 2012
  • Graphene shows diverse novel physical properties arising from its peculiar electronic states, so called Dirac electrons. Especially, effect of magnetic field is very unique, exhibiting exotic Landau level (LL) splitting. LLs are substantially modified by spins of Dirac electrons and pseudo-spins. The degeneracy of LLs is lifted to show splitting by electron-electron interaction and by the Zeeman effect. We investigated the magneto-optical absorption of graphene subjected to ultra-high magnetic field. Samples were prepared by the CVD method deposited on GaAs and Quart substrate. We have confirmed existence of graphene on each substrate by the micro-Raman spectroscopy. Next, we conducted magneto-absorption measurements in magnetic field up to 120 T by the single-turn coil (STC) method. We could observe absorption peak at 65 T and 100 T, respectively, probably arising from the LL inter-band transitions.

  • PDF

MAGNETO-OPTICAL KERR SPECTRA FOR AMORPHOUS RE-Co ALLOY FILMS (비정질 RE-Co 합금막의 자기광학 스펙트럼)

  • Y. J. Choe;S. Tsunashima;S. Uchiyama
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.154-159
    • /
    • 1994
  • The magneto-optical Kerr spectra(${\lambda}=250~700nm$) of amorphous RE-Co(RE=Ce, Nd, Pr, Gd, Tb, Er, Ho) are compared with those of Y-Co films. It has been found that the Kerr rotation of RE-Co is mainly due to Co in the long wavelength region, whereas at short wavelength Ce, Pr, Nd, and Gd contribute positively, and Tb, Ho, and Er contribute negatively to the Kerr rotation of RE-Co amorphous films. In the interesting energy region(1.5~5.0 eV), the magneto-optical contribution of Pr and Nd are thought to be related with $4f{\uparrow}->5d{\uparrow}$ interband transition, and the contribution of Ce and Gd might be concerned with d->p interband transition. The magneto-optical effect of Tb in the short wavelength region might be related with $4f{\downarrow}->5d{\downarrow}$ and/or $5d{\downarrow}->4f{\downarrow}$, and that of Ho and Er can be explained by $4f{\downarrow}->5d{\downarrow}$ magneto-optical interband transition.

  • PDF

Optical Measurement of Magnetic Anisotropy Field in Nanostructured ferromagnetic Thin Films

  • Whang, Hyun-Seok;Yun, Sang-Jun;Moon, Joon;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.8-10
    • /
    • 2015
  • The magnetic anisotropy field plays an important role in spin-orbit-torque-induced magnetization dynamics with electric current injection. Here, we propose a magnetometric technique to measure the magnetic anisotropy field in nanostructured ferromagnetic thin films. This technique utilizes a magneto-optical Kerr effect microscope equipped with two-axis electromagnets. By measuring the out-of-plane hysteresis loops and then analyzing their saturated magnetization with respect to the in-plane magnetic field, the magnetic anisotropy field is uniquely quantified within the context of the Stoner-Wohlfarth theory. The present technique can be applied to small nanostructures, enabling in-situ determination of the magnetic anisotropy field of nanodevices.