• Title/Summary/Keyword: Magneto-optic property

Search Result 4, Processing Time 0.017 seconds

Fabrication of Bismuth- and Aluminum-Substituted Dysprosium Iron Garnet Films for Magneto-Optic Recording by Pyrolysis and Their Magnetic and Magneto-Optic Properties

  • Cho, Jae-Kyong
    • The Korean Journal of Ceramics
    • /
    • v.1 no.2
    • /
    • pp.91-95
    • /
    • 1995
  • Polycrystalline bismuth- and aluminum- substituted dysporsium and yttrium iron garnet (Bi2R3-xAlyFe5-yO12, R=Dy or Y, $0\leqx\leq3, \; 0\leqy\leq3$) films have been prepared by pyrolysis. The crystallization temperatures, the solubility limit of bismuth ions into the garnet phase, and magnetic and magneto-optic properties of the films have been investigated as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures as a function of bismuth and aluminum concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration. It was found that the crystallization temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained temperatures of these films rapidly decreased as bismuth concentration (x) increased up to x=1.5 and then remained unchanged at x>1.5, whereas, showed no changes as aluminum concentration (y) increased up to y=1.0 and then gradually increased at y>1.0. The solubility limit of bismuth ions was x=1.8 when y=0 but increased to x=2.3 when y=1.0. It was demonstrated that the magnetic and magneto-optic properties of the dysprosium iron garnet films could be tailored by bismuth and aluminum substitution suitable for magneto-optic recording as follows. The saturation magnetization and coercivity data obtained for the films indicated that the film composition at which the magnetic compensation temperature became room temperature was y=1.2 when x=1.0. Near this composition the coercivity and the squareness of the magnetic hysteresis loop of the films were several kOe and unit, respectively. The Curie temperatures of the films increased with the increase of x but decreaed with the increase of y, and was 150-$250^{\circ}C$ when x=1.0 and y=0.6-1.4. The Faraday rotation at 633 nm of the films increased as x increased but decreased as y increased, and was 1 deg/$\mu\textrm{m}$ when x=1.0 and y=1.0. Based on the data obtained, the appropriate film composition for magneto-optic recording was estimated as near x=1.0 and y=1.0 or $BiDy_2AlFe_4O_{12}$.

  • PDF

Fomation and Properties of Multiple-Tone Spatial Light Modulator using Garnet Film with In-Plane Magnetization

  • Tsuzuki, A.;Uchida, H.;Takagi, H.;Lim, P.B.;Inoue, M.
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.143-146
    • /
    • 2006
  • We attempted to fabricate a new type of magneto optic spatial light modulator (MO-SLM) for multiple-tone modulation by using in-plane magnetization. In the MO-SLM, magnetic property of magneto-optical layer was modified to be suitable for multiple-tone expression by substituting Al in Bi:YIG film. At a driving current to 28 mA in an electrode of the fabricated MO-SLM, changes in brightness of pixels were observed using a polarization microscope.

Fabrication and Optical Characterization of Highly Dy3+-ion-incorporated Alumino-borosilicate Glasses for Magneto-optical Applications at 1550 nm (1550 nm 자기광학 응용을 위한 고농도 Dy3+ 이온이 함유된 알루미노보로실리케이트 유리의 제조 및 자기광학 특성 분석)

  • Kadathala Linganna;Yong-Tak Ryu;Young-Ouk Park;Bong-Ahn Yu;Bok Hyeon Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.115-120
    • /
    • 2024
  • Magneto-optical (MO) materials have attracted much attention, since they can be utilized for various optical applications, such as magnetic field sensors, optical current sensors, optical isolators, and optical circulators. In this study, alumino-borosilicate (ABS) glasses with high concentrations of Dy3+ ions were fabricated by a conventional melt-quenching technique, and the dependence of their thermal, optical, and magneto-optical properties on Dy3+ ion concentration was investigated. The MO property of the glasses was investigated by measurement of Faraday rotation at 1550 nm. The Faraday rotation angle increased linearly with the increase of Dy3+ ion concentration in the glasses. A very high Verdet constant of -6.86 rad/(T·m) was obtained for glass with a Dy3+ ion concentration of 30 mol%. In addition, the ABS-Dy glasses showed good thermal stability of greater than 128 ℃ against crystallization, and high optical transmission of 70% in the visible to near-infrared windows of 480-720, 1390-1560, and 1800-2400 nm. Due to the high Verdet constant and good thermal stability, the ABS-Dy glasses in this study could be candidate optical materials for MO device applications at 1550 nm.

A Study on the Current Measurement Using Spun Fiber (Spun 광섬유를 이용한 전류 측정에 관한 연구)

  • Kwon, Won-Hyun;Jeon, Suk-Hee;Kim, Young-Soo;Kim, Yo-Hee;Park, Han-Kyu
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1158-1165
    • /
    • 1988
  • In this paper, the polarization properties of spun fiber due to intrinsic birefringence and magneto-optic effects are theoretically analyzed and experimented. The degree of polarization which indicates the intrinsic birefrigence is measured over 0.818, and the variation of output polarization angle with input polarization angle is measured within 9$^{\circ}$. Compared with single mode fiber, spun fiber is found to have very excellent polarization-maintaining property. Implemented current measurement system using spun fiber can linearly measure the magnetic field up to 20,000 A/m generated by solenoid.

  • PDF