• Title/Summary/Keyword: Magnetizing analysis

Search Result 121, Processing Time 0.036 seconds

An Improved High Efficiency Resonant Converter for the Contactless Power Supply with a Low Coupling Transformer (낮은 커플링 변압기를 갖는 비접촉 전원의 개선된 고효율 공진 컨버터)

  • Kong Young-Su;Kim Eun-Soo;Lee Hyun-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.33-39
    • /
    • 2005
  • Comparing with the conventional transformer without the air gap, a contactless transformer with the large air gap between the long primary winding and the secondary winding has increased leakage inductance and reduced magnetizing inductance. For transferring the primary power to the secondary one, the high frequency series resonant converter has been widely used for the contactless power supply system with the large air gap and the increased leakage inductance of the contactless transformer However, the high frequency series resonant converter has the disadvantages of the low efficiency and high voltage gain characteristics in the overall load range due to the large air gap and the circulating magnetizing current. In this paper, the characteristics of the high efficiency and unit voltage gain are revealed in the proposed three-level series-parallel resonant converter. The results are verified on the simulation based on the theoretical analysis and the 5kW experimental prototype.

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

Characteristics Analysis in A Pole Changing Memory Motor Using Coupled FEM & Preisach Modeling (유한요소법과 프라이자흐모델이 결합된 해석기법을 이용한 Pole Changing Memory Motor의 동특성해석)

  • Lee, Seung-Chul;Song, Han-Sang;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1137-1138
    • /
    • 2011
  • This paper deals with the PM performance evaluations in a pole changing memory motor (PCMM) using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics evaluation relative to magnetizing direction and the pole number of machine on re-, demagnetization condition in a pole changing memory motor.

  • PDF

Characteristics Analysis in A Pole Changing Memory Motor Using Coupled FEM & Preisach Modeling (유한요소법과 프라이자흐 모델이 결합된 해석기법을 이용한 극 변환 메모리모터의 동특성해석)

  • Lee, Seung-Chul;Lee, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.965-970
    • /
    • 2011
  • This paper deals with the PM performance evaluations in a pole changing memory motor (PCMM) using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of permanent magnets. The focus of this paper is the characteristics evaluation relative to magnetizing direction and the pole number of machine on re-demagnetization condition in a pole changing memory motor.

Analysis of Magnetizing Circuit using Finite Element Method (유한요소법에 의한 착자회로 해석)

  • Kim, Chang-Eob;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.45-48
    • /
    • 1989
  • A method for analyzing magnetic circuit in a capacitor-discharge impulse magnetizer established by the finite element method. As the detailed distribution of the flux can be obtained, the optimum design of the magnetizer will be possible using our method. The validity of the method is verified by comparing the calculated results with results measured.

  • PDF

Transition of voltage-differential current under internal fault on power transformer (전력용 변압기 내부고장시 전압-차전류의 변화에 관한 연구)

  • Park, Jae-Sae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.92-95
    • /
    • 2004
  • Power transformer is an important apparatus in transforming and delivering the power in a power system. It shows less accident ratio than other system apparatus, but once the accident occurs, it causes long-term operation stoppage and economic loss. It brings high bad spillover effects. Therefore, the role of protective relaying, which is to prevent internal fault a power transformer is highly important. This study proposed advanced algorithm that can clearly determine internal fault of the power transformer and magnetizing inrush, through numerical analysis by using the terminal voltage and input output current.

  • PDF

Magnetization Characteristics Analysis in a Pole Changing Memory Motor Using Coupled FEM and Preisach Modeling

  • Lee, Jung-Ho;Lee, Seung-Chul
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.386-390
    • /
    • 2011
  • This paper deals with the magnetic equivalent circuit modeling and permanent magnet (PM) performance evaluations of a pole changing memory motor (PCMM). We use a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the magnetic characteristics of the permanent magnets. The focus of this paper is on the evaluation of characteristics such as the magnetizing direction and the pole number of the machine under re- and de-magnetization conditions.

Analysis on Current Limiting and Magnetizing Characteristics Due to Winding Locations of Superconducting Fault Current Limiter Using E-I Core (E-I철심을 이용한 변압기형 초전도한류기의 권선 위치에 따른 전류제한 및 자화특성 분석)

  • Kim, Bo-Hee;Choi, Sang-Jae;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.106-110
    • /
    • 2017
  • This paper compared current limiting characteristics of superconducting fault current limiter (SFCL) using E-I core due to the location of windings. Since E-I core has three legs and two magnetic paths, the current limiting characteristics of SFCL were expected to be affected by the installation location of windings, either center leg or right/left leg. To analyze its characteristics, the electrical equivalent circuit of the SFCL were derived and the electromagnetic analysis for the SFCL with the designed structure were performed. From the short-circuit tests, the hysteresis curve and the voltage-current trajectory of the SFCL due to the installation location of windings were extracted and compared each other. The SFCL with windings in the center leg of E-I core was shown to be larger magnetizing inductance compared to the one with windings in the right or left leg of E-I, which was analyzed from the hysteresis curve. In addition, larger decreased fault current right after the fault occurrence in the SFCL with windings in the center leg of E-I core was confirmed than the SFCL with windings in the right or left leg of E-I.

Characteristic Analysis of Permanent Magnet Assisted Synchronous Reluctance Motor for High Power Application (고출력 응용을 위한 영구자석 매입형 동기 릴럭턴스 전동기의 특성해석)

  • Jang Young-Jin;Kim Gi-Bok;Lee Jung-Ho;Kim Sang-Gil;Shin Heung-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.10
    • /
    • pp.585-596
    • /
    • 2004
  • In this paper, finite element analysis for a PMASynRM is presented and the characteristic analysis of inductance and torque is performed under the effect of saturation. The focus of this paper is characteristic analysis of d and q-axis inductances and torque according to magnetizing quantity of interior permanent magnet for PMASynRM. The d and q-axis current component ratios, load angles of a PMASynRM are investigated quantitatively on the basis of the proposed analysis method and the experimental test. Comparisons are given with output characteristic curves of normal SynRM and those according to the load in PMASynRM, respectively And it is confirmed that the proposed model results in high output power performance.