• 제목/요약/키워드: Magnetizing analysis

검색결과 121건 처리시간 0.02초

이중출력을 갖는 새로운 전류환류형 DC-DC 컨버터의 해석 (Analysis of a New Current-Fed DC-DC Converter with the Double Outputs)

  • 홍성민;김창선;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2033-2036
    • /
    • 1997
  • In this paper, we proposed a novel current-fed DC-DC converter with multi-output. It has two winding reactor in series with the input source of the converter. By using the 2nd winding recycling the energy stored in the reactor to the input, the double-outputs DC-DC converter can be created, which makes it a good choice for a multi-output power supply with more outputs and has savings in cost and space. The steady state and dynamic characteristics of the converter are analyzed in detail by using the state space averaging method. It is found that the maximum value of $V_{o2}$ exists in the 2nd output and also during the MOSFET off period, the energy stored in the magnetizing inductance is reset through auxiliary winding $N_3$, so the duty cycle is restricted to 50%. Theoretical and experimental results were taken from the converter rated at switching frequency 50kHz. input voltage 50V. output voltage 5V. 12V and output power 65W. As a result, both results were well consistent. Therefore, it is varified the validity of the proposed converter in this paper.

  • PDF

대화면 LCD TV용 CCFL 병렬 구동에 관한 연구 (A Study on the CCFL Parallel Driving Circuit for the large LCD TV)

  • 장영수;윤석;권기현;한상규;홍성수;사공석진;노정욱
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.454-462
    • /
    • 2006
  • 현재 LCD 인버터의 경쟁력을 키우기 위해 인버터 하나로 다수의 램프를 병렬 구동하는 방식이 많이 사용되고 있다. 본 논문에서는 병렬 구동방식 중 Jin Balance와 O2Micro 방식에 대해 이론적으로 분석하고, 특히 각각의 램프 전류 편차를 일정하게 유지하기 위한 자화 인덕턴스 값의 설계에 대하여 설명하였다. 위의 결과를 이용하여 새로운 전류 평형 방식을 제안하고 수학적으로 분석하였으며, 모의실험을 통해 제안 방식의 정확성을 검증하였다.

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

Voltage-Fed Push-Pull PWM Converter Featuring Wide ZVS Range and Low Circulating Loss with Simple Auxiliary Circuit

  • Ye, Manyuan;Song, Pinggang;Li, Song;Xiao, Yunhuang
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.965-974
    • /
    • 2018
  • A new zero-voltage-switching (ZVS) push-pull pulse-width modulation (PWM) converter is proposed in this paper. The wide ZVS condition for all of the switches is obtained by utilizing the energy stored in the output inductor and magnetizing inductance. As a result, the switching losses can be dramatically reduced. A simple auxiliary circuit including two small diodes and one capacitor is added at the secondary side of a high frequency (HF) transformer to reset the primary current during the circulating stage and to clamp the voltage spike across the rectifier diodes, which enables the use of low-voltage and low-cost diodes to reduce the conducting and reverse recovery losses. In addition, there are no active devices or resistors in the auxiliary circuit, which can be realized easily. A detailed steady operation analysis, characteristics, design considerations, experimental results and a loss breakdown are presented for the proposed converter. A 500 W prototype has been constructed to verify the effectiveness of the proposed concept.

Resonant Tank Design Considerations and Implementation of a LLC Resonant Converter with a Wide Battery Voltage Range

  • Sun, Wenjin;Wu, Hongfei;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1446-1455
    • /
    • 2015
  • This paper illustrates resonant tank design considerations and the implementation of a LLC resonant converter with a wide battery voltage range based on the fundamental harmonic approximation (FHA) analysis. Unlike the conventional design at zero load, the parameter K (the ratio of the transformer magnetizing inductor Lm to the resonant inductor Lr) of the LLC converter in this paper is designed with two charging points, (Vo_min, Io_max1) and (Vo_max, Io_max2), according to the battery charging strategy. A 2.9kW prototype with an output voltage range of 36V to 72V dc is built to verify the design. It achieves a peak efficiency of 96%.

개선된 영전압 스위칭 액티브 클램프 포워드 컨버터 (An Improved ZVS Active Clamp Forward Converter)

  • 최선호;이현관;김은수
    • 전력전자학회논문지
    • /
    • 제10권3호
    • /
    • pp.302-311
    • /
    • 2005
  • 본 논문에서는 액티브 클램프 포워드컨버터 2차 측에 탭-인덕터와 스너버 커페시터, 두 개의 다이오드로 구성된 무손실 스너버를 적용한 개선된 액티브클램프 포워드컨버터를 제안하였고, 종래의 컨버터와 비교하여 제안된 컨버터가 보다 적은 자화전류조건에서도 영전압 스위칭(ZVS)이 가능함을 보였다. 제안된 컨버터의 동작원리 및 모드를 분석하였고, 300W출력용량의 컨버터 시제품을 제작 실험하여 제안된 컨버터의 효율특성이 개선됨을 보였다.

고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터 (A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module)

  • 이우진;최성욱;김정은;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF

A New PWM-Controlled Quasi-Resonant Converter for a High Efficiency PDP Sustaining Power Module

  • Lee, Woo-Jin;Choi, Seong-Wook;Kim, Chong-Eun;Moon, Gun-Woo
    • Journal of Power Electronics
    • /
    • 제7권1호
    • /
    • pp.28-37
    • /
    • 2007
  • A new PWM-controlled quasi-resonant converter for a high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with a bi-directional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stresses of power switches. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.

가상공극개념을 이용한 연구자석의 전체전자기력과 상호체적력밀도 계산 (Evaluation of Global Force and Interaction Body Force Density in Permanent Magnet Employing Virtual Air-gap Concept)

  • 이세희
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.278-284
    • /
    • 2009
  • The global force and interaction body force density were evaluated in permanent magnets by using the virtual air-gap scheme incorporating the finite-element method. Until now, the virtual air-gap concept has been successfully applied to calculate a contact force and a body force density in soft magnetic materials. These force calculating methods have been called as generalized methods such as the generalized magnetic charge force density method, the generalized magnetizing current force density method, and the generalized Kelvin force density method. For permanent magnets, however, there have been few research works on a contact force and a force density field. Unlike the conventional force calculating methods resulting in surface force densities, the generalized methods are novel methods of evaluating body force density. These generalized methods yield the actual total force, but their distributions have an irregularity, which seems to be random distributions of body force density. Inside permanent magnets, however, a smooth pattern was obtained in the interaction body force density, which represents the interacting force field among magnetic materials. To evaluate the interaction body force density, the intrinsic force density should be withdrawn from the total force density. Several analysis models with permanent magnets were tested to verify the proposed methods evaluating the interaction body force density and the contact force, in which the permanent magnet contacts with a soft magnetic material.

Output Voltage Ripple Analysis and Design Considerations of Intrinsic Safety Flyback Converter Based on Energy Transmission Modes

  • Hu, Wei;Zhang, Fangying;Xu, Yawu;Chen, Xinbing
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.908-917
    • /
    • 2014
  • For the purpose of designing an intrinsic safety Flyback converter with minimal output voltage ripple based on a specified output current, this paper first classified the energy transmission modes of the system into three sorts, namely, the Complete Inductor Supply Mode-CCM (CISM-CCM), the Incomplete Inductor Supply Mode-CCM (IISM-CCM) and the Incomplete Inductor Supply Mode-DCM (IISM-DCM). Then, the critical secondary self-inductance assorting the three modes are deduced and expressions of the output voltage ripples (OVR) are presented. For a Flyback converter with constant loads and switching frequency, it is shown that the output voltage ripple in the CISM-CCM is the smallest and that it has no relationship with the secondary self-inductance. Otherwise, the OVR of the other two modes are bigger than the previously mentioned one. It is concluded that the critical inductance between the CISM-CCM and the IISM-CCM is the minimal secondary self-inductance to ensure the smallest output voltage ripple. At last, a design method to guarantee the minimum OVR within the scales of the input voltage and load are analyzed, and the minimum secondary self-inductance is proposed to minimize the OVR. Simulations and experiments are given to verify the results.