• 제목/요약/키워드: Magnetite particles

검색결과 76건 처리시간 0.024초

인제거용 흡착제로서 밀스케일로부터 선별된 마그네타이트 적용 연구 (A study on the application of mill scale-derived magnetite particles for adsorptive removal of phosphate from wastewater)

  • 김윤중;엘라;최영균
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.281-287
    • /
    • 2017
  • Mill scale, an iron waste, was used to separate magnetite particles for the adsorption of phosphate from aqueous solution. Mill scale has a layered structure composed of wustite (FeO), magnetite ($Fe_3O_4$), and hematite ($Fe_2O_3$). Because magnetite shows the highest magnetic property among these iron oxides, it can be easily separated from the crushed mill scale particles. Several techniques were employed to characterize the separated particles. Mill scale-derived magnetite particles exhibited a strong uptake affinity to phosphate in a wide pH range of 3-7, with the maximum adsorptive removal of 100%, at the dosage of 1 g/L, pH 3-5. Langmuir isotherm model well described the equilibrium data, exhibiting maximum adsorption capacities for phosphate up to 4.95 and 8.79 mg/g at 298 and 308 K, respectively. From continuous operation of the packed-bed column reactor operated with different EBCT (empty bed contact time) and adsorbent particle size, the breakthrough of phosphate started after 8-22 days of operation. After regeneration of the column reactor with 0.1N NaOH solution, 95-98% of adsorbed phosphate could be detached from the column reactor.

인 흡착용 마그네타이트 합성 시 알칼리 종류 및 농도가 공침 입자크기에 미치는 영향 (Effects of alkali species and concentration on the size distribution of the co-precipitated magnetite particles used for phosphate adsorption)

  • 이민형;;남해욱;김윤중;최영균
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.409-415
    • /
    • 2016
  • Magnetite particles were synthesized by co-precipitation of water-soluble 밀 스케일-derived precursor by various concentrations of (0.5, 0.67, 1, 2 N) NaOH and (0.6, 0.8, 1.2, 2.4 N) $NH_4OH$. It is theoretically known that as the concentration of the alkaline additive used in iron oxide synthesis increases, the particle size distribution of that iron oxide decreases. This trend was observed in both kind of alkaline additive used, NaOH and $NH_4OH$. In addition, the magnetite synthesized in NaOH showed a relatively smaller particle size distribution than magnetite synthesized in $NH_4OH$. Crystalline phase of the synthesized magnetite were determined by X-ray diffraction spectroscopy(XRD). The particles were then used as an adsorbent for phosphate(P) removal. Phosphorus adsorption was found to be more efficient in NaOH-based synthesized magnetite than the $NH_4OH$-based magnetite.

부티르산 혐기성 소화에 대한 암모니아 저해영향과 자철석가루 투입을 통한 개선 효과 조사 (Ammonia Inhibition on Anaerobic Digestion of Butyric Acid and Improvement Effect by Magnetite Particles)

  • 정성윤;김민재;이준엽
    • 한국환경과학회지
    • /
    • 제31권2호
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the inhibition of ammonia on anaerobic digestion of butyric acid was evaluated and the potential alleviating effects of such ammonia inhibition by the addition of magnetite particles were investigated. Independent anaerobic batch tests fed with butyric acid as a sole organic source were conducted in twenty 60-mL glass bottles with 10 different treatment conditions, comprising ammonia: 0.5, 2.0, 4.0, 6.0, and 7.0 g total ammonia nitrogen (TAN)/L and magnetite particles: 0 mM and 20 mM. The increase in ammonia concentration did not cause significant inhibition on methane yield; however, a significant inhibition on lag time and specific methane production rate was observed. The IC50 in the control treatments (without magnetite addition) was estimated as 6.2654 g TAN/L. A similar inhibition trend was observed in magnetite-added treatments; however, the inhibition effect by ammonia was significantly alleviated in lag time and specific methane production rate when compared to those in the control treatments. The lag time was shortened by 1.6-46.3%, specific methane production rate was improved by 6.0-69.0%. In the magnetite-added treatments, IC50 was estimated as 8.5361 g TAN/L. This study successfully demonstrated the potential of magnetite particles as an enhancer in anaerobic digestion of butyric acid under conditions of ammonia stress.

A novel method for the synthesis of nano-magnetite particles

  • Syahmazgi, Maryam Ghodrati;Falamaki, Cavus;Lotfi, Abbas Sahebghadam
    • Advances in nano research
    • /
    • 제2권2호
    • /
    • pp.89-98
    • /
    • 2014
  • A novel and simple method for the synthesis of nano-magnetite particles is disclosed. In the novel procedure, $Fe^{2+}$ is the only source of metal cation. Carboxymethylcellulose (CMC) is used as the structure directing agent. The phase analysis of the nano-particles was performed using XRD and electron diffraction techniques. Size and morphology analysis was performed using light scattering and TEM techniques. The effect of $NH_4OH$ solution (32 wt. %) at different CMC concentrations on the size distribution of the final magnetite powders is studied. An optimal base concentration exists for each CMC concentration leading to minimal agglomeration. There exists a minimum CMC concentration (0.0016 wt. %), lower than that no magnetite forms. It is shown that using the new method, it is possible to immobilize a lipase enzyme (Candida Rugosa) with immobilization efficiency larger than 98 % with a loading more than 3 times the reported value in the literature. The latter phenomenon is explained based on the agglomerate state of the nano-particles in the liquid phase.

Fundamental study on cancer therapy by blocking newborn blood vessels by magnetic force control

  • KIRIMURA, Makoto;AKIYAMA, Yoko;NISHIJIMA, Shigehiro
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권2호
    • /
    • pp.11-15
    • /
    • 2018
  • In this study, a cancer treatment by accumulating and aggregating ferromagnetic particles in newborn blood vessels was examined. It is necessary for this treatment to control dispersion-aggregation property of ferromagnetic particles. Ferromagnetic particles required in this method disperse at low magnetic field, aggregate at high magnetic field and maintain the aggregation even after removal of the magnetic field. In order to control the dispersion-aggregation property, the surface of magnetite particles was modified with higher fatty acids having different lengths. As a result, we succeeded to prepare propionic acid-modified magnetite particles that form irreversible aggregation by magnetic field. The model experiments simulating newborn blood vessels showed that these particles can block the flow by the magnetic field, and the blockage was maintained after removal of the magnetic field.

안정화 처리를 위한 전기로 제강분진의 물성 (A Study on the Properties of Electric Arc-Furnace Steelmaking Dusts for Stabilization Processing)

  • 현종영;조동성
    • 자원리싸이클링
    • /
    • 제7권5호
    • /
    • pp.13-18
    • /
    • 1998
  • 전기로 제강분진의 물성을 파악하기 위하여 분진의 성분, 형상, 입도, 자성, 비중, 공극율 및 용출에 관한 성질을 조사하였다. 분진의 대부분은 서브 마이크론에서 수십 마이크론에 이르는 다양한 크기의 구형입자들이 서로 응집된 상태이고, 큰 입자에는 철분이 그리고 작은 입자에는 아연이 주로 농집되며, XRD 분석으로는 franklinite(${ZnFe}_{2}{O}_{4}$), magnetite(${Fe}_{3}{O}_{4}$), zincite(ZnO) 등의 결정이 확인된다. 분진을 습식으로 체가름하였을 때에 +200 mesh의 입단은 1.5% 정도이고 magnetite와 quartz의 결정을 함유하며, 200∼500 mesh는 magnetite, franklinite, zincite가 혼재되고, 분진의 약 82%를 차지하는 -500 mesh에는 franklinite와 zincite의 결정이 혼재한다. 공극율이 78% 정도인 분진을 약 1㎪로 압착하면 공극율은 68% 정도가 되고, 약 13㎪로 압착하면 53% 정도로 된다. 제강분진을 폐기물 처리공정 시험방법에 따라 용출시켰을 때에 허용기준치를 초과한 중금속은 카드뮴, 납, 수은이었다.

  • PDF

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

나노 크기의 마그네타이트 입자를 이용한 자성 키토산 미소구체의 제조 (Preparation of Magnetic Chitosan Microsphere Particles)

  • 고상길;조준희;안양규;송기창;최은정
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.66-70
    • /
    • 2006
  • 본 연구에서는 음향화학법을 적용한 공침 기술을 이용, 균일한 마그네타이트 나노 입자를 합성하였다 이 방법을 통하여 합성된 마그네타이트 나노 입자를 이용하여 마그네타이트 나노 입자들이 균일하게 분산된 마이크로미터 크기의 키토산 미소구체를 제조하였다. 이 연구의 목적은 생분해성, 저독성, 생체친화성의 특징을 갖고 있는 키토산과 균일한 마그네타이트 나노 입자를 이용하여 자기공명 영상의 조영제와 혈관 폐색을 위한 혈관 색전물질 등에 활용 가능성 있는 초상자성 특성을 갖는 미소구체를 제조하는 것이다. 우리는 $1\%$ 아세트산 용액을 사용하여 키토산 용액을 제조, 마그네타이트 나노 입자들을 분산시켰다. 키토산이 알칼리 수용액에서 겔화되는 성질을 이용하여, 마그네타이트 나노 입자들이 분산된 키토산 용액을 알칼리 용액에 분무하여 초상자성 특성을 갖는 자성 키토산 미소구체를 제조하였다.

자철석 가루 투입을 통한 푸르푸랄의 혐기성 소화 개선 효과 조사 (Enhancing Anaerobic Digestion of Furfural Wastewater through Magnetite Powder Supplementation)

  • 강선민;이준엽
    • 한국환경과학회지
    • /
    • 제33권2호
    • /
    • pp.131-138
    • /
    • 2024
  • The effect of magnetite particles on the anaerobic digestion (AD) of furfural wastewater was investigated using sequential anaerobic batch tests. The batch tests with four 500 mL anaerobic bioreactors were performed under two conditions: FC treatment for AD of furfural without magnetite particles, and FM treatment for AD of furfural with magnetite particles. The FC bioreactors showed a decreasing methane production rate (MPR) across the sequential batches, with a final batch MPR of 11.3 ± 0.4 mL CH4/L/d, indicating the need for a methanogenesis enhancer to achieve high-rate AD of furfural. Conversely, FM bioreactors exhibited significantly higher MPR, exceeding FC values by 4-196%, with a final batch MPR of 33.5 ± 0.1 mL CH4/L/d, which was about three times higher than FC. Additionally, FM bioreactors had faster degradation rates of furfural, valeric acid, and acetic acid compared to FC, with values exceeding those in PC by 3.0, 1.14, and 2.8 times, respectively. These results demonstrate that magnetite particles can enhance the AD of furfural not only by accelerating methanogenesis but also by accelerating the anaerobic degradation of furfural and its intermediates, such as volatile fatty acids. This study provides valuable insights for developing high-rate AD systems for furfural wastewater treatment.